Amplification and beam combination of ultra-short KrF laser pulse
-
摘要: 为充分利用氟化氪(KrF)准分子激光放大器的长泵浦时间,探索提高激光输出效率的方法,开展紫外超短脉冲在KrF准分子激光器中多脉冲放大和组束的实验研究。采用双脉冲放大方案研究激光脉冲时间间隔对输出能量的影响,确定延时时间,提高脉冲总能量并有效抑制自发辐射(ASE)。实现了单次放大4个紫外超短脉冲,获得了近4倍于单脉冲放大的输出能量。并探索紫外超短激光脉冲的组束技术,成功应用光学角多路的方法将两个亚皮秒的紫外激光脉冲进行精确组束。Abstract: To make full use of the long pump time of krypton fluoride excimer laser amplifiers and to increase the amplification efficiency, we carried out experimental research on multi-pulse amplification and beam combination of ultra-short UV pulses. The effect of delay time on pulse energy was studied using dual pulse amplification. Based on the above relationship, optimal delay time was confirmed, the increase of total energy and the reduction of amplified spontaneous emission (ASE) were both archived. Amplification of four ultraviolet pulses was achieved, and the energy was nearly four times that of the single pulse amplification. We also explored beam combining technology of ultraviolet ultra-short laser pulses, and combined two sub-picosecond pulses accurately.
-
Key words:
- ultraviolet short pulse laser /
- excimer laser /
- KrF laser /
- beam amplification /
- beam combination
-
表 1 脉冲能量
Table 1. Pulse energy
pulse No. input energy/μJ output energy/mJ 1 70±10 40±5 2 55±10 50±5 3 62±10 40±5 4 61±10 50±5 -
[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commu, 1985, 55(3): 447-449. [2] Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers[J]. Science, 1994, 264(5161): 917-924. doi: 10.1126/science.264.5161.917 [3] Joshi C J, Corkum P B. Interaction of ultra-intense laser light with matter[J]. Physics Today, 1995, 48(1): 36-43. doi: 10.1063/1.881451 [4] Mourou G, Barry C P, Perry M D, et al. Ultrahigh-intensity lasers: physics of the extreme on a tabletop[J]. Physics Today, 1998, 51(1): 22-28. doi: 10.1063/1.882131 [5] Cowan T E, Hunt A W, Phillips T W, et al. Photonuclear fission from high energy electrons from ultraintense laser-solid interactions[J]. Phys Rev Lett, 2000, 84(5): 903-906. doi: 10.1103/PhysRevLett.84.903 [6] Zweiback J, Smith R A, Cowan T E, et al. Nuclear fusion driven by Coulomb explosions of large deuterium clusters[J]. Phys Rev Lett, 2000, 84(12): 2634-2637. doi: 10.1103/PhysRevLett.84.2634 [7] Ledingham K W, Spencer I, Mccanny T, et al. Photonuclear physics when a multiterawatt laser pulse interacts with solid targets[J]. Phys Rev Lett, 2000, 84(5): 899-902. doi: 10.1103/PhysRevLett.84.899 [8] Ewald F, Schwoerer H, Dusterer S, et al. Application of relativistic laser plasmas for the study of nuclear reactions[J]. Plasma Physics and Controlled Fusion, 2003, 45(12A): A83. doi: 10.1088/0741-3335/45/12A/006 [9] 汤秀章, 张海峰, 龚堃, 等. 电子束泵浦KrF激光器进行超短脉冲的单束放大实验研究[J]. 强激光与粒子束, 2002, 14(5):641-645. (Tang Xiuzhang, Zhang Haifeng, Gong Kun, et al. Amplification of UV ultrashort pulse laser in e beam pumped KrF amplifier[J]. High Power Laser and Particle Beams, 2002, 14(5): 641-645 [10] Szatmari S, Almasi G, Feuerhake M, et al. Production of intensities of ~1019 W/cm2 by a table-top KrF laser[J]. Applied Physics B, 1996, 63(5): 463-466. [11] Barr J R, Everall N J, Hooker C J, et al. High energy amplification of picosecond pulses at 248 nm[J]. Opt Commu, 1988: 127-132. [12] Szatmari S. High-brightness ultraviolet excimer lasers[J]. Appl Phys B, 1994, 58(3): 211-223.