[1] |
周翠云, 刘源, 杜松涛, 等. 1 030 nm高重复频率纳秒脉冲全光纤放大器[J]. 中国激光, 2011, 38:0802010. (Zhou Cuiyun, Liu Yuan, Du Songtao, et al. 1 030 nm high repetition rate nanosecond pulse all fiber amplifier[J]. Chinese Journal of Lasers, 2011, 38: 0802010
|
[2] |
Tao R M, Ma P F, Wang X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1-6.
|
[3] |
孙殷宏, 柯伟伟, 冯昱骏, 等. 1 030 nm千瓦级掺镱光纤窄线宽激光放大器[J]. 中国激光, 2016, 43:0601003. (Sun Yinhong, Ke Weiwei, Feng Yujun, et al. 1 030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier[J]. Chinese Journal of Lasers, 2016, 43: 0601003
|
[4] |
Naderi A N, Dajani I, Flores A. High-efficiency, kilowatt 1 034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021. doi: 10.1364/OL.41.001018
|
[5] |
Stiles E. New developments in IPG fiber laser technology[C]//5th International Workshop on Fiber Lasers. 2009.
|
[6] |
Tao R M, Wang X L, Zhou P, et al. Comprehensive theoretical study of mode instability in high power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0903319.
|
[7] |
Zhou P, Xiao H, Leng J Y, et al. High-power fiber lasers based on tandem pumping[J]. Journal of the Optical Society of America B, 2017, 34(3): A29.
|
[8] |
Huang Y, Edgecumbe J, Ding J, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1 028-1 100 nm[C]//Fiber Lasers XI: Technology, Systems, and Applications. 2014.
|
[9] |
Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]//Fiber Lasers XIII: Technology, Systems, and Applications. 2016.
|