Laser-induced damage in fused silica under multi-wavelength simultaneous laser irradiation
-
摘要: 对比研究了3ω单独辐照、3ω+2ω和3ω+1ω双波长同时辐照下熔石英元件的初始损伤和损伤增长规律,重点研究3ω能量密度在其阈值附近时,低能量密度的2ω和1ω对初始损伤和损伤增长的影响,分析了波长间的能量耦合效应。结果表明:双波长同时辐照下,当2ω和1ω能量密度远低于其自身阈值时,它们对初始损伤几率和损伤增长阈值的影响可以忽略,但也会参与初始损伤和损伤增长过程,会增加初始损伤程度和损伤增长系数。基于飞秒双脉冲成像的冲击波速度测量表明,3ω和1ω同时辐照下,波长间的能量耦合效应会促进激光能量向材料沉积的效率。Abstract: The initial damage and damage growth of fused silica optical elements irradiated by 3ω alone, by two wavelengths (3ω+2ω and 3ω+1ω) at the same time were studied. When the energy density of 3ω is near its threshold, the influence of 2ω and 1ω of low energy density on the initial damage and damage growth is studied. The energy coupling mechanism between wavelengths is analyzed. The results show that: When the energy density of 2ω or 1ω is much lower than its threshold, irradiating at the same time, their effects on the initial damage probability and damage growth threshold can be ignored. But the initial damage degree and damage growth coefficient will increase. The measurement of shock wave velocity based on femtosecond dual pulse imaging shows that, when 3ω and 1ω irradiate at the same time, the energy coupling effect between wavelengths will promote the deposition efficiency of laser energy to materials.
-
Key words:
- laser induced damage /
- fused silica /
- multiwavelength laser /
- initial damage /
- damage growth
-
表 1 双波长同时辐照下熔石英的初始损伤几率
Table 1. Damage probability of fused silica irradiated by dual wavelength laser
wavelengths energy density/(J·cm−2) damage probability/% wavelengths energy density/(J·cm−2) damage probability/% 3ω+2ω 17+3 0 3ω+1ω 17+5 0 17+6 0 17+10 3 17+9 2 17+15 4.5 17+12 5.5 17+20 6 20.5+3 7 20.5+5 4.5 20.5+6 5 20.5+10 4 20.5+9 1.5 20.5+15 3 20.5+12 3.5 20.5+20 8.5 24+3 3 24+5 5 24+6 8 24+10 7 24+9 10 24+15 8 24+12 12 24+20 14 27.5+3 31 - - 表 2 2ω和1ω对损伤几率和损伤坑平均面积的影响
Table 2. Influence of 2ω and 1ω wavelengths on damage probability and damage degree
wavelengths energy density/(J·cm−2) damage probability/% average area/μm2 3ω 20.5 1.5 2 043 24 4 3 180 30.5 28 4 565 31 33.5 4 737 33 47 6 455 3ω+2ω 20.5+3 4 2 105 20.5+6 5 2 517 20.5+9 1.5 4 029 20.5+12 3.5 5 134 3ω+1ω 20.5+5 4.5 1 903 20.5+10 4 2 480 20.5+15 3 2 507 20.5+20 8.5 3 701 表 3 3ω+2ω同时辐照下熔石英的损伤增长几率
Table 3. Damage growth probability of fused silica irradiated by 3ω and 2ω simultaneously
No. 3ω energy density/(J·cm−2) 2ω energy density/(J·cm−2) damage growth probability/% 1 4.4 2.4 0 2 5 0 0 3 5 1.2 0 4 5 2.4 5 5 6 0 0 6 6 1.2 11 7 6 2.4 17 8 6.5 0 13 9 6.5 1.2 18 10 6.5 2.4 26 表 4 3ω+1ω同时辐照下熔石英的损伤增长几率
Table 4. Damage growth probability of fused silica irradiated by 3ω and 1ω simultaneously
No. 3ω energy density/(J·cm−2) 1ω energy density/(J·cm−2) damage growth probability/% 1 4.4 2.4 0 2 5 0 0 3 5 1.2 0 4 5 2.4 0 5 6 0 0 6 6 1.2 0 7 6 2.4 7 8 6 3.6 12 9 6.5 0 10 10 6.5 1.2 14 11 6.5 2.4 20 -
[1] Zhou Ming, Shao Jianda, Fan Zheng Xiu. Effect of multiple wavelengths combination on laser-induced damage in multilayer mirrors[J]. Optics Express, 2009, 17(22): 20313. doi: 10.1364/OE.17.020313 [2] 黄进, 任寰, 吕海兵, 等. 三种不同波长的激光对熔石英损伤行为的对比研究[J]. 光学与光电技术, 2007, 5(6):5-8. (Huang Jin, Ren Huan, Lü Haibing, et al. Comparison of damage action of fused silica at different laser wavelength[J]. Optics & Optoelectronic Technology, 2007, 5(6): 5-8 doi: 10.3969/j.issn.1672-3392.2007.06.002 [3] Chambonneau M, Rullier J L, Grua P, et al. Wavelength dependence of the mechanisms governing the formation of nanosecond laser induced damage in fused silica[J]. Optics Express, 2018, 26(17): 21819-21830. doi: 10.1364/OE.26.021819 [4] Norton M A, Donohue E E, Feit M D, et al. Growth of laser damage in SiO2 under multiple wavelength irradiation[C]//Proc of SPIE. 2006: 599108. Laser-Induced Damage in Optical Materials. 2005. [5] 周明, 赵元安, 李大伟, 等. 1 064 nm和532 nm激光共同辐照薄膜的损伤[J]. 中国激光, 2009, 36(11):3050. (Zhou Ming, Zhao Yuanan, Li Dawei, et al. Laser damage of optical film with the combined irradiation of 1 064 nm and 532 nm pulse[J]. Chinese Journal of Lasers, 2009, 36(11): 3050 doi: 10.3788/CJL20093611.3050 [6] Carr C W, Matthews M J, Bude J D, et al. The effect of laser pulse duration on laser-induced damage in KDP and SiO2 [C]//Proc of SPIE. 2007: 64030K. [7] Reyné S, Duchateau G, Natoli J Y, et al. 355 nm and 1064 nm-pulse mixing to identify the laser-induced damage mechanisms in KDP[C]//Proc of SPIE. 2011: 79370L. [8] Lamaignere L, Reyne S, Loiseau M, et al. Effects of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2[C]//Proc of SPIE. 2007: 67200F. [9] Exarhos G J, Norton M A, Ristau D, et al. Laser damage growth in fused silica with simultaneous 351 nm and 1 053 nm irradiation[C]//Proc of SPIE. 2008: 71321H. [10] Ma B, Ma H, Jiao H, et al. Laser-damage growth characteristics of fused silica under 1 064- and 532-nm laser irradiation[J]. Optical Engineering, 2013, 52: 116106. doi: 10.1117/1.OE.52.11.116106 [11] Norton M A, Carr C W, Feit M D, et al. Laser damage growth in fused silica with simultaneous 351 nm and 1 053 nm irradiation[C]//Proc of SPIE. 2008: 713250. [12] Yan L, Wei C, Li D, et al. Coupling effect of multi-wavelength lasers in damage performance of beam splitters at 355 nm and 1064 nm[J]. Applied Optics, 2011, 51(16): 3243. [13] Chambonneau M, Lamaignere L. Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings[J]. Sci Rep, 2018, 8(1): 891. doi: 10.1038/s41598-017-18957-9 [14] Demange P, Negres R A, Rubenchik A M, et al. Understanding and predicting the damage performance of KDxH2-xPO4 crystals under simultaneous exposure to 532- and 355-nm pulses[J]. Applied Physics Letters, 2006, 89(18): 113. [15] 邱荣, 蒋勇, 郭德成, 等. 多波长辐照下熔石英光学元件的损伤及损伤增长[J]. 强激光与粒子束, 2019, 31:082001. (Qiu Rong, Jiang Yong, Guo Decheng, et al. Damage and damage growth of fused silica optical elements under multi-wavelength irradiation[J]. High Power Laser and Particle Beams, 2019, 31: 082001 [16] Taylor G. The formation of a blast wave by a very intense explosion. I. Theoretical discussion[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1950, 201(1065): 159-174. doi: 10.1098/rspa.1950.0049