留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多波长激光同时辐照下熔石英元件的损伤研究

邱荣 蒋勇 郭德成 史晋芳 李翠 叶成 周强 韩伟 黄进

邱荣, 蒋勇, 郭德成, 等. 多波长激光同时辐照下熔石英元件的损伤研究[J]. 强激光与粒子束, 2020, 32: 011011. doi: 10.11884/HPLPB202032.190479
引用本文: 邱荣, 蒋勇, 郭德成, 等. 多波长激光同时辐照下熔石英元件的损伤研究[J]. 强激光与粒子束, 2020, 32: 011011. doi: 10.11884/HPLPB202032.190479
Qiu Rong, Jiang Yong, Guo Decheng, et al. Laser-induced damage in fused silica under multi-wavelength simultaneous laser irradiation[J]. High Power Laser and Particle Beams, 2020, 32: 011011. doi: 10.11884/HPLPB202032.190479
Citation: Qiu Rong, Jiang Yong, Guo Decheng, et al. Laser-induced damage in fused silica under multi-wavelength simultaneous laser irradiation[J]. High Power Laser and Particle Beams, 2020, 32: 011011. doi: 10.11884/HPLPB202032.190479

多波长激光同时辐照下熔石英元件的损伤研究

doi: 10.11884/HPLPB202032.190479
基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1530109);国家自然科学基金项目(11972313)
详细信息
    作者简介:

    邱 荣(1978—),男,副教授,主要从事强激光与物质相互作用的理论与应用技术研究;43951700@qq.com

  • 中图分类号: O469

Laser-induced damage in fused silica under multi-wavelength simultaneous laser irradiation

  • 摘要: 对比研究了3ω单独辐照、3ω+2ω和3ω+1ω双波长同时辐照下熔石英元件的初始损伤和损伤增长规律,重点研究3ω能量密度在其阈值附近时,低能量密度的2ω和1ω对初始损伤和损伤增长的影响,分析了波长间的能量耦合效应。结果表明:双波长同时辐照下,当2ω和1ω能量密度远低于其自身阈值时,它们对初始损伤几率和损伤增长阈值的影响可以忽略,但也会参与初始损伤和损伤增长过程,会增加初始损伤程度和损伤增长系数。基于飞秒双脉冲成像的冲击波速度测量表明,3ω和1ω同时辐照下,波长间的能量耦合效应会促进激光能量向材料沉积的效率。
  • 为满足物理实验需要,ICF激光驱动器装置的终端光学组件工作在以3ω为主的三波长激光同时辐照环境下,且3ω通量往往都接近元件的损伤阈值,终端光学组件是装置稳定、高效和安全运行的薄弱环节[1-5]。由于同时存在波长效应和波长间的能量耦合效应,多波长同时辐照下的初始损伤和损伤增长的物理机制比单波长要复杂很多[6-9]。研究多波长激光同时辐照下的初始损伤和损伤增长的实验现象,分析多波长激光同时辐照下损伤过程的能量耦合机制,有助于我们理解激光诱导光学元件损伤的物理机制,预测光学元件的使用寿命,对系统进行优化设计,提高系统的负载能力并降低运行成本[10-14]。本文研究了3ω单独辐照、3ω+2ω和3ω+1ω双波长同时辐照下熔石英的初始损伤和损伤增长实验规律,获得了在3ω阈值附近,低能量密度的2ω和1ω对初始损伤和损伤增长的影响规律,利用基于飞秒双脉冲的阴影成像方法获得了冲击波速度,分析了多波长激光同时辐照下光学元件损伤的能量耦合机制。

    本文所采用损伤测试实验系统及实验方法见文献[15]。为了使研究结果对工程应用具有参考意义,选择各波长能量密度比与工程装置终端组件相近的情况作为实验条件。损伤坑面积采用辐照后离线显微成像的方式获得。采用图1所示的泵浦−探针阴影成像系统进行冲击波速度测量,Nd:YAG纳秒多波长激光作为泵浦脉冲,钛宝石飞秒激光作为探针脉冲。飞秒脉冲经1∶1分光镜分成两束,其中一束经延迟线产生延迟时间Δt。利用飞秒激光器外同步触发信号发生器(DG645),信号发生器控制纳秒激光与飞秒激光的延时ΔT。控制CCD曝光时间,采用单发双脉冲成像方法,单次成像可获得同一冲击波的两个波前,经长度定标可得到Δt内冲击波前的平均速度。利用光电探头和示波器获取ΔT,由于飞秒种子和纳秒激光器输出的时间抖动,ΔT存在±10 ns的抖动。实验样品厚度2 mm,透镜聚焦250 mm。

    图  1  基于飞秒双脉冲的冲击波速度测量系统的原理示意图
    Figure  1.  Schematic diagram of shock wave velocity measurement based on double femtosecond pulse

    实验样品基材为Corning 7980,尺寸为100 mm×70 mm×5 mm和100 mm×10 mm×2 mm,表面精抛光,实验前用氢氟酸(HF)和氟化氨(NH4F )溶液在超声波环境下进行表面刻蚀,经去离子水清洗,并经高纯酒精脱水处理后擦净。实验样品在1ω,2ω和3ω单独辐照下的最大零几率损伤阈值分别约为64,45和19 J/cm2,损伤增长阈值分别约为15,10和6 J/cm2[15]

    表1为不同能量密度组合的3ω+2ω,3ω+1ω同时辐照下熔石英的初始损伤几率,虽然从3ω@17 J/cm2+2ω@9 J/cm2,3ω@17 J/cm2+1ω@10 J/cm2能量密度组合已经出现损伤,但随着能量密度逐渐增加,损伤几率没有明显变化,考虑样品差异和损伤的随机性、离散性,可以认为2ω和1ω对损伤几率没有明显贡献。在3ω@24 J/cm2+2ω@9 J/cm2,3ω@24 J/cm2+1ω@20 J/cm2时损伤几率分别增加到10%和14%,此时,可认为2ω和1ω对损伤几率有贡献。

    表  1  双波长同时辐照下熔石英的初始损伤几率
    Table  1.  Damage probability of fused silica irradiated by dual wavelength laser
    wavelengthsenergy density/(J·cm−2)damage probability/%wavelengthsenergy density/(J·cm−2)damage probability/%
    3ω+2ω17+303ω+1ω17+50
    17+6017+103
    17+9217+154.5
    17+125.517+206
    20.5+3720.5+54.5
    20.5+6520.5+104
    20.5+91.520.5+153
    20.5+123.520.5+208.5
    24+3324+55
    24+6824+107
    24+91024+158
    24+121224+2014
    27.5+331--
    下载: 导出CSV 
    | 显示表格

    表2为不同能量密度(组合)的3ω单独、3ω+2ω和3ω+1ω双波长同时辐照下的损伤几率和损伤坑平均面积的实验结果。3ω单独辐照下,随着3ω能量密度增加,损伤几率和损伤坑平均面积都快速增加。在双波长同时辐照下,随着2ω和1ω的能量密度增加,虽然损伤几率没有明显变化,但损伤坑平均面积呈单调增加趋势。

    表  2  2ω和1ω对损伤几率和损伤坑平均面积的影响
    Table  2.  Influence of 2ω and 1ω wavelengths on damage probability and damage degree
    wavelengthsenergy density/(J·cm−2)damage probability/%average area/μm2
    3ω20.51.52 043
    2443 180
    30.5284 565
    3133.54 737
    33476 455
    3ω+2ω20.5+342 105
    20.5+652 517
    20.5+91.54 029
    20.5+123.55 134
    3ω+1ω20.5+54.51 903
    20.5+1042 480
    20.5+1532 507
    20.5+208.53 701
    下载: 导出CSV 
    | 显示表格

    表3表4是3ω+2ω,3ω+1ω双波长同时辐照下熔石英的损伤增长实验规律。可以看出,在3ω@5 J/cm2+2ω@2.4 J/cm2和3ω@6 J/cm2+1ω@2.4 J/cm2的情况下,2ω和1ω对损伤增长开始有明显贡献。

    表  3  3ω+2ω同时辐照下熔石英的损伤增长几率
    Table  3.  Damage growth probability of fused silica irradiated by 3ω and 2ω simultaneously
    No.3ω energy density/(J·cm−2)2ω energy density/(J·cm−2)damage growth probability/%
    14.42.40
    2500
    351.20
    452.45
    5600
    661.211
    762.417
    86.5013
    96.51.218
    106.52.426
    下载: 导出CSV 
    | 显示表格
    表  4  3ω+1ω同时辐照下熔石英的损伤增长几率
    Table  4.  Damage growth probability of fused silica irradiated by 3ω and 1ω simultaneously
    No.3ω energy density/(J·cm−2)1ω energy density/(J·cm−2)damage growth probability/%
    14.42.40
    2500
    351.20
    452.40
    5600
    661.20
    762.47
    863.612
    96.5010
    106.51.214
    116.52.420
    下载: 导出CSV 
    | 显示表格

    图2是脉冲能量均为30 mJ的1ω,3ω单独辐照和同时辐照下,熔石英后表面损伤的典型阴影成像图,Δt=28 ns。其中1,2和3分别为体内一次冲击波前、体内二次冲击波前和空气冲击波前,1′,2′和3′为Δt时间间隔后的冲击波前。选择体内一次冲击波为研究对象,图2(a)(b)(c)对应的冲击波前在Δt时间间隔内的平均速度分别为4.58×103,6.07×103和6.42×103 m/s。

    图  2  基于飞秒双脉冲的熔石英后表面损伤典型阴影成像图
    Figure  2.  Typical shadow images of rear-surface damage based on double wavelength femtosecond laser

    双波长同时辐照下,在3ω单独辐照损伤阈值和损伤增长阈值附近,当能量密度比2ω∶3ω≥0.2∶1(损伤增长)和≥0.5∶1(初始损伤)时,2ω会对损伤增长和初始损伤产生明显贡献;当能量密度比1ω∶3ω≥0.4∶1(损伤增长)和≥0.8∶1(初始损伤)时,1ω会对损伤增长和初始损伤产生明显贡献;在初始损伤中,能量密度比2ω∶3ω<0.5∶1的2ω和1ω∶3ω<0.8∶1的1ω虽然对损伤几率影响较小甚至没有影响,但会引起损伤坑平均面积增加。

    对于多波长同时辐照下熔石英的初始损伤和损伤增长实验现象一个可能合理的解释:

    (1)初始损伤及损伤增长过程均可分为两个阶段。第一阶段,缺陷(损伤坑)吸收激光产生自由电子并形成低温等离子体(其膨胀不足以产生损伤(增长));第二阶段,低温等离子体高效吸收后续激光,内能增加,形成高温等离子体,其剧烈膨胀产生损伤(增长)。

    (2)双波长同时辐照下,当3ω能量密度在其单独辐照的阈值附近,能量密度远低于其自身损伤阈值和损伤增长阈值的2ω和1ω被3ω产生的自由电子、低温等离子体和高温等离子体吸收,从而引起损伤几率(程度)增加。即,如果2ω和1ω被3ω产生的自由电子或低温等离子体大量吸收,形成高温等离子体,则主要引起损伤几率增加;如果2ω和1ω主要被3ω产生的高温等离子体吸收,导致等离子体内能进一步增加,则主要引起损伤程度增加。从这个角度来看,多波长同时辐照下,只要其中一个波长对元件产生了损伤或损伤增长现象,其产生的自由电子和等离子体就会对其他波长激光产生吸收,从而对初始损伤和损伤增长造成影响。

    根据Taylor等人[16]提出的等离子体点爆炸球面波模型

    (1)

    式中:v是冲击波前速度;E是等离子体能量;γ为无量纲常数;ρ是介质密度。根据2.4的实验测试结果,,即双波长同时辐照下等离子体积累的能量大于两个波长单独辐照下等离子体积累的能量之和,表明波长间的耦合效应促进了激光能量向材料(等离子体)沉积的效率。当然,这需要忽略缺陷、激光及相互作用过程的差异。这种现象可以解释为,较高能量密度的3ω被缺陷吸收产生自由电子和等离子体,自由电子和等离子体吸收1ω,使得原本对1ω不吸收(或吸收很小)的缺陷产生了吸收;同时,吸收1ω后,电子密度和等离子体温度增加,又会增加其对3ω脉冲后续能量的吸收效率;使得原本单独吸收3ω不会损伤的产生了损伤,原本会产生损伤的增加了损伤程度。

    多波长激光同时辐照下熔石英元件的初始损伤和损伤增长过程中,同时存在激光与材料相互作用的波长效应和波长间的能量耦合效应,自由电子和等离子体是波长间能量耦合效应的吸收媒介,会促进激光能量向材料沉积的效率。当3ω能量密度在其损伤阈值和损伤增长阈值附近,能量密度远低于其自身阈值的2ω和1ω会被3ω产生的自由电子和等离子体吸收,虽然可能不会对损伤几率和损伤增长阈值产生影响,但会增加初始损伤程度和损伤增长系数。

  • 图  1  基于飞秒双脉冲的冲击波速度测量系统的原理示意图

    Figure  1.  Schematic diagram of shock wave velocity measurement based on double femtosecond pulse

    图  2  基于飞秒双脉冲的熔石英后表面损伤典型阴影成像图

    Figure  2.  Typical shadow images of rear-surface damage based on double wavelength femtosecond laser

    表  1  双波长同时辐照下熔石英的初始损伤几率

    Table  1.   Damage probability of fused silica irradiated by dual wavelength laser

    wavelengthsenergy density/(J·cm−2)damage probability/%wavelengthsenergy density/(J·cm−2)damage probability/%
    3ω+2ω17+303ω+1ω17+50
    17+6017+103
    17+9217+154.5
    17+125.517+206
    20.5+3720.5+54.5
    20.5+6520.5+104
    20.5+91.520.5+153
    20.5+123.520.5+208.5
    24+3324+55
    24+6824+107
    24+91024+158
    24+121224+2014
    27.5+331--
    下载: 导出CSV

    表  2  2ω和1ω对损伤几率和损伤坑平均面积的影响

    Table  2.   Influence of 2ω and 1ω wavelengths on damage probability and damage degree

    wavelengthsenergy density/(J·cm−2)damage probability/%average area/μm2
    3ω20.51.52 043
    2443 180
    30.5284 565
    3133.54 737
    33476 455
    3ω+2ω20.5+342 105
    20.5+652 517
    20.5+91.54 029
    20.5+123.55 134
    3ω+1ω20.5+54.51 903
    20.5+1042 480
    20.5+1532 507
    20.5+208.53 701
    下载: 导出CSV

    表  3  3ω+2ω同时辐照下熔石英的损伤增长几率

    Table  3.   Damage growth probability of fused silica irradiated by 3ω and 2ω simultaneously

    No.3ω energy density/(J·cm−2)2ω energy density/(J·cm−2)damage growth probability/%
    14.42.40
    2500
    351.20
    452.45
    5600
    661.211
    762.417
    86.5013
    96.51.218
    106.52.426
    下载: 导出CSV

    表  4  3ω+1ω同时辐照下熔石英的损伤增长几率

    Table  4.   Damage growth probability of fused silica irradiated by 3ω and 1ω simultaneously

    No.3ω energy density/(J·cm−2)1ω energy density/(J·cm−2)damage growth probability/%
    14.42.40
    2500
    351.20
    452.40
    5600
    661.20
    762.47
    863.612
    96.5010
    106.51.214
    116.52.420
    下载: 导出CSV
  • [1] Zhou Ming, Shao Jianda, Fan Zheng Xiu. Effect of multiple wavelengths combination on laser-induced damage in multilayer mirrors[J]. Optics Express, 2009, 17(22): 20313. doi: 10.1364/OE.17.020313
    [2] 黄进, 任寰, 吕海兵, 等. 三种不同波长的激光对熔石英损伤行为的对比研究[J]. 光学与光电技术, 2007, 5(6):5-8. (Huang Jin, Ren Huan, Lü Haibing, et al. Comparison of damage action of fused silica at different laser wavelength[J]. Optics & Optoelectronic Technology, 2007, 5(6): 5-8 doi: 10.3969/j.issn.1672-3392.2007.06.002
    [3] Chambonneau M, Rullier J L, Grua P, et al. Wavelength dependence of the mechanisms governing the formation of nanosecond laser induced damage in fused silica[J]. Optics Express, 2018, 26(17): 21819-21830. doi: 10.1364/OE.26.021819
    [4] Norton M A, Donohue E E, Feit M D, et al. Growth of laser damage in SiO2 under multiple wavelength irradiation[C]//Proc of SPIE. 2006: 599108. Laser-Induced Damage in Optical Materials. 2005.
    [5] 周明, 赵元安, 李大伟, 等. 1 064 nm和532 nm激光共同辐照薄膜的损伤[J]. 中国激光, 2009, 36(11):3050. (Zhou Ming, Zhao Yuanan, Li Dawei, et al. Laser damage of optical film with the combined irradiation of 1 064 nm and 532 nm pulse[J]. Chinese Journal of Lasers, 2009, 36(11): 3050 doi: 10.3788/CJL20093611.3050
    [6] Carr C W, Matthews M J, Bude J D, et al. The effect of laser pulse duration on laser-induced damage in KDP and SiO2 [C]//Proc of SPIE. 2007: 64030K.
    [7] Reyné S, Duchateau G, Natoli J Y, et al. 355 nm and 1064 nm-pulse mixing to identify the laser-induced damage mechanisms in KDP[C]//Proc of SPIE. 2011: 79370L.
    [8] Lamaignere L, Reyne S, Loiseau M, et al. Effects of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2[C]//Proc of SPIE. 2007: 67200F.
    [9] Exarhos G J, Norton M A, Ristau D, et al. Laser damage growth in fused silica with simultaneous 351 nm and 1 053 nm irradiation[C]//Proc of SPIE. 2008: 71321H.
    [10] Ma B, Ma H, Jiao H, et al. Laser-damage growth characteristics of fused silica under 1 064- and 532-nm laser irradiation[J]. Optical Engineering, 2013, 52: 116106. doi: 10.1117/1.OE.52.11.116106
    [11] Norton M A, Carr C W, Feit M D, et al. Laser damage growth in fused silica with simultaneous 351 nm and 1 053 nm irradiation[C]//Proc of SPIE. 2008: 713250.
    [12] Yan L, Wei C, Li D, et al. Coupling effect of multi-wavelength lasers in damage performance of beam splitters at 355 nm and 1064 nm[J]. Applied Optics, 2011, 51(16): 3243.
    [13] Chambonneau M, Lamaignere L. Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings[J]. Sci Rep, 2018, 8(1): 891. doi: 10.1038/s41598-017-18957-9
    [14] Demange P, Negres R A, Rubenchik A M, et al. Understanding and predicting the damage performance of KDxH2-xPO4 crystals under simultaneous exposure to 532- and 355-nm pulses[J]. Applied Physics Letters, 2006, 89(18): 113.
    [15] 邱荣, 蒋勇, 郭德成, 等. 多波长辐照下熔石英光学元件的损伤及损伤增长[J]. 强激光与粒子束, 2019, 31:082001. (Qiu Rong, Jiang Yong, Guo Decheng, et al. Damage and damage growth of fused silica optical elements under multi-wavelength irradiation[J]. High Power Laser and Particle Beams, 2019, 31: 082001
    [16] Taylor G. The formation of a blast wave by a very intense explosion. I. Theoretical discussion[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1950, 201(1065): 159-174. doi: 10.1098/rspa.1950.0049
  • 期刊类型引用(2)

    1. 郜洋,陈元攀,周鑫,王玉冉,马婷婷,张丽卿,周磊,郝辰春,邱荣. 纳秒激光对磷酸二氢钾晶体的辐照效应及其损伤机理研究. 原子核物理评论. 2024(04): 1050-1057 . 百度学术
    2. 胡梦玥,任建华. 基于氮化硅基材的微结构高反射镀膜实验和模拟研究. 节能技术. 2021(04): 317-320 . 百度学术

    其他类型引用(5)

  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  1317
  • HTML全文浏览量:  345
  • PDF下载量:  89
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-11-25
  • 修回日期:  2019-12-26
  • 刊出日期:  2019-12-26

目录

/

返回文章
返回