留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

APTR质子同步加速器RFQ直线注入器的优化设计

乔舰 谢修璀 李德明 蒲越虎

乔舰, 谢修璀, 李德明, 等. APTR质子同步加速器RFQ直线注入器的优化设计[J]. 强激光与粒子束, 2020, 32: 064004. doi: 10.11884/HPLPB202032.200036
引用本文: 乔舰, 谢修璀, 李德明, 等. APTR质子同步加速器RFQ直线注入器的优化设计[J]. 强激光与粒子束, 2020, 32: 064004. doi: 10.11884/HPLPB202032.200036
Qiao Jian, Xie Xiucui, Li Deming, et al. Upgrade of RFQ injector system for proton synchrotron at Shanghai Advanced Proton Therapy Facility[J]. High Power Laser and Particle Beams, 2020, 32: 064004. doi: 10.11884/HPLPB202032.200036
Citation: Qiao Jian, Xie Xiucui, Li Deming, et al. Upgrade of RFQ injector system for proton synchrotron at Shanghai Advanced Proton Therapy Facility[J]. High Power Laser and Particle Beams, 2020, 32: 064004. doi: 10.11884/HPLPB202032.200036

APTR质子同步加速器RFQ直线注入器的优化设计

doi: 10.11884/HPLPB202032.200036
基金项目: 国家重点研究发展计划项目(2016YFC0105408)
详细信息
    作者简介:

    乔 舰(1988—),男,博士研究生,从事加速器物理方面的研究;qiaojian@sinap.ac.cn

    通讯作者:

    蒲越虎(1965—),男,博士,研究员,从事质子治疗加速器及相关方面的研究;puyuehu@sinap.ac.cn

  • 中图分类号: TL503.3

Upgrade of RFQ injector system for proton synchrotron at Shanghai Advanced Proton Therapy Facility

  • 摘要: 为实现质子治疗装置的国产化和小型化,基于已完成安装调试的上海先进质子治疗装置(APTR),开展质子治疗注入器系统的升级设计研究,利用PARMTEQM设计软件和快聚束策略,针对APTR同步加速器RFQ直线注入器进行动力学设计模拟。RFQ工作频率为325 MHz,流强18 mA,对从离子源引出的低能质子束流进行匹配俘获、横向聚焦、纵向聚束和预加速,引出能量为3.0 MeV。通过优化预注入器RFQ动力学设计方案和极头参数,有效避免参数共振,减小束流损失,使其整体传输效率达到98.0%,在水平和垂直方向上的发射度增长分别为1.2%和3.3%,出口束流满足下一级腔体的注入需求,开展设计模拟验证和相关冗余度分析,为质子同步加速器的治疗设备和直线注入系统提供参照依据。
  • 图  1  质子治疗装置APTR升级前后的注入器APTR-LINAC的整体布局图

    Figure  1.  Overall layout of the APTR-LINAC

    图  2  RFQ腔体注入能量与腔体长度和功率损耗的关系

    Figure  2.  Cavity length and power consumption vs input beam energy

    图  3  RFQ优化设计前后调制系数m和横向聚焦强度B的对比演化曲线

    Figure  3.  Evolution curves of modulation factor m and focusing strength B before and after optimization

    图  4  RFQ优化前后孔径a和横纵向相移σ0tσ0l的对比演化曲线

    Figure  4.  Contrast evolution curves of zero current phase shift and aperture a before and after optimization

    图  5  RFQ主要设计参数的演化曲线

    Figure  5.  Main parameters of RFQ

    图  6  利用PARMTEQM程序,RFQ多粒子模拟结果

    Figure  6.  PARMTEQM simulation results of the RFQ

    图  7  RFQ入口和出口粒子相空间分布图

    Figure  7.  Phase space distributions at the entrance and exit of RFQ

    图  8  RFQ归一化RMS发射度,粒子传输效率和束流功率损耗和Kilpatrick因子沿纵向的演化曲线

    Figure  8.  Evolution of normalized RMS emittance, transmission efficiency and beam power loss, and Kilpatrick factor along the whole cavity

    图  9  RFQ的传输效率与注入束流发射度、流强和能散的关系曲线

    Figure  9.  Transmission efficiency vs input beam emittance, beam current and energy spread

    表  1  RFQ直线加速器主要的设计要求

    Table  1.   Main parameters of the RFQ

    parametersvaluesunits
    ion typeproton
    frequency325MHz
    pulse repetition rate0.5~10Hz
    output beam pulse length40~100μs
    output energy3.0MeV
    maximum duty factor0.1%
    input norm. RMS emittance0.2π·mm·mrad
    maximum output norm. RMS emittance0.24π·mm·mrad
    beam current18mA
    下载: 导出CSV

    表  2  频率接近325 MHz的RFQ装置的相关参数汇总

    Table  2.   Parameters of proton RFQ facilities with adjacent frequency around world

    facilityfrequency/MHzcurrent/mAvoltage/kVKilpatrick coefficientEin/keVEout/MeV
    SNS[5]402.538831.85652.5
    CADS-1[6]32515551.85353.2
    CSNS[7]32420801.78503.0
    CPHS[8]3255060~1301.80503.0
    下载: 导出CSV

    表  3  优化前后束流动力学设计参数对比

    Table  3.   Beam dynamics design results of the traditional and optimized design

    parameterstraditional designoptimized designunits
    frequency 325 325 MHz
    input energy 30 30 keV
    output energy 3.0 3.0 MeV
    beam current 18 18 mA
    inter-vane voltage 75 75 kV
    $\varepsilon _{{\rm{in}}}^{ {\rm{trans} },{\rm{norm} },{\rm{RMS} } }$ 0.2 0.2 π·mm·mrad
    minimum aperture 1.744 1.920 mm
    Kilpatrick factor 1.8 1.7
    cavity length 319.22 310.00 cm
    transmission eff. 97.5 98.0 %
    $\varepsilon _{ {\rm{out} } }^{x,{\rm{norm} },{\rm{RM} }S}$ 0.215 6 0.202 3 π·mm·mrad
    $\varepsilon _{{\rm{out}}}^{y,{\rm{norm}},{\rm{RMS}}}$ 0.221 5 0.206 6 π·mm·mrad
    $\varepsilon _{{\rm{out}}}^{z,{\rm{norm}},{\rm{RMS}}}$ 0.068 94 0.060 95 π·MeV·(°)
    下载: 导出CSV
  • [1] Fang Shouxian, Guan Xialing, Tang Jingyu, et al. ATPF—A dedicated proton therapy facility[J]. Chinese Physics C, 2010(3): 383-388.
    [2] Han R C, Li Y J, Pu Y H. Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy[J]. Nuclear Science and Techniques, 2020, 31(2): 13. doi: 10.1007/s41365-020-0722-z
    [3] 李海荣, 蒋舸扬, 金林, 等. 质子治疗装置动态电源控制系统研发[J]. 强激光与粒子束, 2020, 32:045108. (Li Hairong, Jiang Geyang, Jin Lin, et al. Development of dynamic power control system in proton therapy facility[J]. High Power Laser and Particle Beams, 2020, 32: 045108
    [4] Kilpatrick W D. Criterion for vacuum sparking designed to include both RF and DC[J]. Rev SciInstrum, 1957, 28(10): 824-826.
    [5] Ratti A, Ayers J, Doolittle L, et al. The SNS RFQ commissioning[J]. Proceedings of Linac, 2002.
    [6] Sui Y F, Cao J S, Deng Q Y, et al. Overview of beam instrumentation for the CADS injector Ⅰ proton linac[C]//Proc IPAC. 2015.
    [7] Chen Jiaer, Guo Zhiyu, Fu Shinian, et al. Studies on RFQ accelerators and its applications[J]. Chinese Physics C, 2009, 33: 926-929. doi: 10.1088/1674-1137/33/10/019
    [8] Young L M, Bai Y J, Zhang H Y, et al. Construction status of the CPHS RFQ at Tsinghua University[C]//Proceedings of IPAC. 2011.
    [9] 陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32:045101. (Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101
    [10] Wangler T P. RF linear accelerators[M]. 2nd ed. New York: John Wiley & Sons, 2008.
    [11] Stokes R H, Wangler T P, Crandall K R. The radio-frequency quadrupole—A new linear accelerator[J]. IEEE Trans Nuclear Science, 1981, 28: 1999-2003. doi: 10.1109/TNS.1981.4331575
    [12] Lombardi A, Pirkl W, Bylinsky Y. First operating experience with the CERN decelerating RFQ for antiprotons[C]//Proceedings of PAC. 2001: 585-587.
    [13] Sun Liepeng, Yuan Zhenyu, Zhang Cheng, et al. Analysis of modules failure in solid-state amplifier for high current RFQ[J]. High Power Laser and Particle Beams, 2019, 31: 065103.
    [14] Rossi C, Bourquin P, Lallement J B, et al. The radiofrequency quadrupole accelerator for the Linac4[C]//Proceedings of LINAC. 2008: 157-159.
    [15] Crandall K R, Wangler T P. PARMTEQ—A beam dynamics code for the RFQ linear accelerator[J]. Conference Proceedings, 1988, 177: 22-28.
    [16] Duperrier R. TOUTATIS: A radio frequency quadrupole code[J]. Review of Modern Physics, 2000, 3: 124201.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1561
  • HTML全文浏览量:  310
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 修回日期:  2020-04-16
  • 刊出日期:  2020-05-12

目录

    /

    返回文章
    返回