Calculation method and modes of radiation damage for single element target
-
摘要: 通过SRIM程序的快速损伤计算与全级联计算两种常用模式,对单元素靶材料进行粒子辐照模拟计算,分别利用基于损伤能量间接计算移位数的NRT位移模型方法和直接通过输出文件读取的方法获得移位数,并对数据进行相应的处理及分析对比,结果表明:对于单元素靶来说,在SRIM快速损伤和全级联两种计算模式下,利用NRT位移模型数值计算得到的移位数基本一致,都可以用于进一步计算得到可靠的位移损伤剂量(dpa);而通过SRIM两种模式下的输出文件数据直接获得的移位数则有两倍左右的差异,要想得到相对可靠的dpa相关参数,需要根据不同辐照情况选取合适的计算模式。Abstract: The ion irradiation will cause different degrees of radiation damage to the target material. One of the important physical parameters to evaluate the radiation damage is dpa, that is, the displacements per atom. The Monte Carlo method based SRIM simulation program, which describes the collision and energy loss between ions and the target, is widely used to calculate many parameters related to particle beam irradiation. The number of atomic shifts per unit depth per incident particle can also be calculated as an important parameter in dpa. In this paper, the single element target material is simulated by two common models of SRIM program. The NRT mathematical model based on damage energy is used to calculate the number of displacements indirectly and the output file is used to get the displacements number directly. The results show that for the single element target, the displacements calculated by the mathematical model are basically the same under the two modes of SRIM Quick damage and SRIM Full cascade, which can be used to calculate the dpa reliably. The displacements obtained directly from the output file of the two modes have about two-fold difference. To get the reliable dpa parameters, it is necessary to select the appropriate calculation mode according to different irradiations.
-
Key words:
- radiation damage /
- displacement /
- damage energy /
- NRT model /
- quick damage /
- full cascade
-
表 1 50 keV粒子辐照时,由NRT模型计算得到的移位数
$\nu $ Table 1. Number of vacancies calculated by the NRT model at 50 keV ion irradiation
incident ion target ${T_{{\rm{dam}}}}$ /eV ${\nu _{{\rm{NRT}}}}$ ratio ${\nu _{{\rm{NRT(F - C)}}}}/{\nu _{{\rm{NRT(K - P)}}}}$ K-P F-C K-P F-C proton Si 625 550 7.1 6.3 0.88 proton Fe 955 955 9.6 9.6 1.00 Fe Si 32 660 29 135 373.3 333.0 0.89 Fe Fe 35 165 37 130 351.7 371.3 1.06 Au Si 33 490 30 180 382.7 344.9 0.90 Au Fe 35 805 37 545 358.1 375.5 1.05 表 2 500 keV粒子辐照时,由NRT模型计算得到的移位数
$\nu $ Table 2. Number of vacancies calculated by the NRT model at 500 keV ion irradiation
incident ion target ${T_{{\rm{dam}}}}$/eV ${\nu _{{\rm{NRT}}}}$ ratio ${\nu _{{\rm{NRT(F - C)}}}}/{\nu _{{\rm{NRT(K - P)}}}}$ K-P F-C K-P F-C proton Si 1 150 1 000 13.1 11.4 0.87 proton Fe 1 550 1 550 15.5 15.5 1.00 Fe Si 212 850 181 000 2 432.6 2 068.6 0.85 Fe Fe 258 050 281 400 2 580.5 2 814.0 1.09 Au Si 258 400 218 250 2 953.1 2 494.3 0.84 Au Fe 298 850 326 350 2 988.5 3 263.5 1.09 表 3 5 MeV粒子辐照时,由NRT模型计算得到的移位数
$\nu $ Table 3. Number of vacancies calculated by the NRT model at 5 MeV ion irradiation
incident ion target ${T_{{\rm{dam}}}}$/eV ${\nu _{{\rm{NRT}}}}$ ratio ${\nu _{{\rm{NRT(F - C)}}}}/{\nu _{{\rm{NRT(K - P)}}}}$ K-P F-C K-P F-C proton Si 3 500 3 000 40 34.3 0.86 proton Fe 4 000 4 000 40 40 1.00 Fe Si 578 000 485 500 6 605.7 5 548.6 0.84 Fe Fe 799 000 890 000 7 990 8 900 1.11 Au Si 1 388 000 115 000 15 862.9 12 743 0.81 Au Fe 1 836 000 2 065 000 18 360 20 650 1.12 表 4 50 keV粒子辐照时,由SRIM计算得到的移位数
$\nu $ Table 4. Number of vacancies from output of SRIM for 50 keV ion irradiation
incident ion target number of vacancies from “vacancy.txt” ratio ${\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{F - C}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$ proton Si 3.6 5.3 1.47 0.50 0.84 proton Fe 4.1 7.7 1.88 0.43 0.81 Fe Si 368 516.4 1.40 0.99 1.55 Fe Fe 347.8 711.7 2.05 0.99 1.92 Au Si 377.9 546.4 1.45 0.99 1.58 Au Fe 355.1 747.4 2.10 0.99 1.99 表 5 500 keV粒子辐照时,由SRIM计算得到的移位数
$\nu $ Table 5. Number of vacancies from output of SRIM for 500 keV ion irradiation
incident ion target number of vacancies from “vacancy.txt” ratio ${\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{F - C}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$ proton Si 7.5 11.1 1.48 0.57 0.97 proton Fe 7.7 14.9 1.94 0.50 0.96 Fe Si 2 403.9 3 152.9 1.31 0.99 1.52 Fe Fe 2 559.5 5 230.2 2.04 0.99 1.86 Au Si 2 936.4 3 816.8 1.30 0.99 1.53 Au Fe 2 978.7 6 101.8 2.05 1.00 1.87 表 6 5 MeV粒子辐照时,由SRIM计算得到的移位数
$\nu $ Table 6. Number of vacancies from output of SRIM for 5 MeV ion irradiation
incident ion target number of vacancies from “vacancy.txt” ratio ${\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{F - C}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$ proton Si 21.9 32.1 1.47 0.55 0.94 proton Fe 21.8 43.2 1.98 0.55 1.08 Fe Si 6 464.6 5 548.6 1.29 0.98 1.50 Fe Fe 7 863.3 16 315.4 2.07 0.98 1.83 Au Si 15 771.3 19 429.1 1.23 0.99 1.52 Au Fe 18 300.2 38 272 2.09 1.00 1.85 表 7 He、Li粒子辐照Si,不同方法得到的移位数对比
Table 7. Number of vacancies from different tests for He、Li in Si
incident ion and energy(keV) ${\nu _{{\rm{NRT}}}}$from Eq.(2) number of displaced atoms from "vacancy.txt" ratio K-P F-C ${\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{F - C}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$ ${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$ ${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$ He,50 58.9 55.1 45.6 69.4 1.52 0.77 1.26 He,500 85.7 79.4 66 98.7 1.50 0.77 1.24 He,5 000 120.0 114.3 91.7 137.3 1.50 0.76 1.20 Li,50 109.0 101.8 94.7 141 1.49 0.87 1.38 Li,500 189.1 174.9 161.3 236.7 1.47 0.85 1.35 Li,5 000 257.1 234.3 212.2 305.7 1.44 0.83 1.30 -
[1] Sang P Y. Evaluation of radiation damage induced by a proton beam at the KOMAC facility[J]. J Korean Phys Soc, 2015, 66(3): 439-442. doi: 10.3938/jkps.66.439 [2] Ziegler J F, Biersack J P, Ziegler M D. SRIM—The stopping and range of ions in matter(2010)[J]. Nucl Instrum Methods Phys Res Sect B, 2010, 268(11/12): 1818-1823. [3] Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates[J]. Nucl Eng Des, 1975, 33(1): 50-54. doi: 10.1016/0029-5493(75)90035-7 [4] Ziegler J F, Biersack J P, Littmark U. The stopping and range of ions in matter[M]. New York: Pergamon, 1985. [5] Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure[J]. Nucl Instrum Methods Phys Res Sect B, 2013, 310: 75-80. doi: 10.1016/j.nimb.2013.05.008 [6] Saha U, Devan K, Ganesan S. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013[J]. J Nucl Mater, 2018, 503: 30-41. doi: 10.1016/j.jnucmat.2018.02.039 [7] Weber W J, Zhang Yanwen. Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations[J]. Curr Opin Solid State Mater Sci, 2019, 23(4): 1-11. [8] Seitz F. On the disordering of solids by action of fast massive particles[J]. Discuss Faraday Soc, 1949, 5: 271-282. doi: 10.1039/df9490500271 [9] Kinchin G H, Pease R S. The displacement of atoms in solids by radiation[J]. Rep Prog Phys, 1955, 18(1): 1-51. doi: 10.1088/0034-4885/18/1/301 [10] Lindhard J, Scharff M, Schiøtt H E. Range concepts and heavy ion ranges (notes on atomic collisions, II) [M].Denmark: I kommission hos Ejnar Munksgaard, 1963. [11] Etherington E W, Bramman J I, Nelson R S, et al. A UKAEA evaluation of displacement damage models for iron[J]. Nucl Eng Des, 1975, 33(1): 82-90. doi: 10.1016/0029-5493(75)90039-4 [12] Robinson M T. Basic physics of radiation damage production[J]. J Nucl Mater, 1994, 216: 1-28. doi: 10.1016/0022-3115(94)90003-5