留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种脉冲强电流条件下导线电阻测量方法

王为武 单连强 田超 袁宗强 张锋 邓志刚 张天奎 滕建 刘东晓 曹磊峰 周维民 谷渝秋

王为武, 单连强, 田超, 等. 一种脉冲强电流条件下导线电阻测量方法[J]. 强激光与粒子束, 2020, 32: 082001. doi: 10.11884/HPLPB202032.200057
引用本文: 王为武, 单连强, 田超, 等. 一种脉冲强电流条件下导线电阻测量方法[J]. 强激光与粒子束, 2020, 32: 082001. doi: 10.11884/HPLPB202032.200057
Wang Weiwu, Shan Lianqiang, Tian Chao, et al. A method for estimating coil resistance with pulsed strong electric current[J]. High Power Laser and Particle Beams, 2020, 32: 082001. doi: 10.11884/HPLPB202032.200057
Citation: Wang Weiwu, Shan Lianqiang, Tian Chao, et al. A method for estimating coil resistance with pulsed strong electric current[J]. High Power Laser and Particle Beams, 2020, 32: 082001. doi: 10.11884/HPLPB202032.200057

一种脉冲强电流条件下导线电阻测量方法

doi: 10.11884/HPLPB202032.200057
基金项目: 国家自然科学基金青年基金项目(11905203);等离子体物理重点实验室基金项目(6142A0401040217)
详细信息
    作者简介:

    王为武(1986—),男,助理研究员,从事超强激光与等离子体相互作用研究;wangweiwu_wl@126.com

    通讯作者:

    周维民(1978—),男,研究员,从事激光等离子体物理研究;zhouweimin@gmail.com

    谷渝秋(1968—),男,研究员,从事强场物理研究;yqgu@caep.ac.cn

  • 中图分类号: O539

A method for estimating coil resistance with pulsed strong electric current

  • 摘要: 在超强激光辐照电容线圈靶产生强磁场实验中,在约50 ps时,线圈电流达到20 kA以上。通过该实验结果与磁场产生理论模型对比,可得出该导线电阻值比常温直流电阻高出3个量级。对导线材料电阻率与趋肤效应的分析结果表明,该电阻值在量级上是合理的。获得超快脉冲强电流条件下的导线电阻值,有助于更深入理解线圈靶产生强磁场过程。
  • 图  1  激光辐照电容线圈靶产生强磁场的原理示意图

    Figure  1.  Magnetic field generated by laser irradiating capacitor-coil target

    图  2  三发次实验获得的电流随时间变化关系

    Figure  2.  Current in the coil inferred by proton radiography in three shots

    图  3  通过磁场产生模型,得到不同导线电阻值和激光到电子能量转化率h条件下的电流随时间变化过程

    Figure  3.  Currents in the coil from the numerical model with different coil resistances and the fractions h of laser energy absorbed by the electrons

    图  4  由文献[25]公式(7)得到Al电阻率在1 eV~100 eV条件下随温度变化曲线

    Figure  4.  Resistivity of Al changes with temperature from Eq.(7)of Ref. [25],the fit is good at temperature from 1 eV to 100 eV

    图  5  导线电阻为50 Ω时,导线通过电阻加热获得的总能量随时间变化曲线

    Figure  5.  Ohmic heating energy changes with time when coil resistance is 50 Ω

    表  1  近几年实验激光条件及磁场结果

    Table  1.   Laser parameters and the corresponding magnetic field results in recent years

    laser facilitylaser parametersmagnetic fielddiagnostic methoddata origin
    energy/Jwavelengthintensity/(W/cm2
    GEKKO-XII,Japan10001×10151.5 kT@650 μmFaraday rotationFujioka,2013[16]
    LULI pico 2000,France5001×1017~800 TB-dot probeSantos,2015[17]
    GEKKO-LFEX,Japan8803×1016610 Tproton radiographyLaw,2016[18]
    OMEGA,USA25003×101650 Tproton radiographyLan Gao,2016[19]
    OMEGA,USA7504.5×1015210 Tproton radiographyGoyon,2017[20]
    下载: 导出CSV
  • [1] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Rev Mod Phys, 2006, 78(2): 309-371. doi: 10.1103/RevModPhys.78.309
    [2] Yu J Q, Lu H Y, Takahashi T, et al. Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses[J]. Phys Rev Lett, 2019, 122: 014802. doi: 10.1103/PhysRevLett.122.014802
    [3] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Rev Mod Phys, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [4] Lindl J D, Haan S W, Landen O L, et al. Progress toward a self-consistent set of 1D ignition capsule metrics in ICF[J]. Phys Plasmas, 2018, 25: 122704. doi: 10.1063/1.5049595
    [5] Gilch P, Pollinger-Dammer F, Musewald C, et al. Magnetic field effect on picosecond electron transfer[J]. Science, 1998, 281: 982-984. doi: 10.1126/science.281.5379.982
    [6] Huang Kai, Lu Quanming, Gan Lan, et al. Particle-in-cell simulations of magnetically driven reconnection using laser-powered capacitor coils[J]. Phys Plasmas, 2018, 25: 052104. doi: 10.1063/1.5021147
    [7] Wang W M, Gibbon P, Shang Z M, et al. Magneticaly assisted fast ignition[J]. Phys Rev Lett, 2015, 114: 015001. doi: 10.1103/PhysRevLett.114.015001
    [8] Daido H, Miki F, Mima K, et al. Generation of a strong magnetic field by an intense CO<sub>2</sub> laser pulse[J]. Phys Rev Lett, 1986, 56(8): 846-849. doi: 10.1103/PhysRevLett.56.846
    [9] Zhang Zhe, Zhu Baojun, Li Yutong, et al. Generation of strong magnetic fields with a laser-driven coil[J]. High Power Laser Science and Engineering, 2018, 6: 38. doi: 10.1017/hpl.2018.33
    [10] Bailly-Grandvaux M, Santos J J, Bellei C, et al. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields[J]. Nat Commun, 2018, 9: 102. doi: 10.1038/s41467-017-02641-7
    [11] Shi Yuan, Qin Hong, Fisch N J. Laser-plasma interactions in magnetized environment[J]. Phys Plasmas, 2018, 25: 055706. doi: 10.1063/1.5017980
    [12] Zhu B J, Li Y T, Yuan D W, et al. Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses[J]. Appl Phys Lett, 2015, 107: 261903. doi: 10.1063/1.4939119
    [13] Zhu B J, Zhang Z, Jiang W M, et al. Ultrafast pulsed magnetic fields generated by a femtosecond laser[J]. Appl Phys Lett, 2018, 113: 072405. doi: 10.1063/1.5038047
    [14] Yuan X X, Zhong J Y, Zhang Z, et al. Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil[J]. Plasma Phys Control Fusion, 2018, 60: 065009. doi: 10.1088/1361-6587/aabaa9
    [15] Wang W W, Cai H B, Teng J, et al. Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target[J]. Phys Plasmas, 2018, 25: 083111. doi: 10.1063/1.5000991
    [16] Fujioka S, Zhang Z, Ishihara K, et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser[J]. Scientific Reports, 2013, 3: 1170. doi: 10.1038/srep01170
    [17] Santos J J, Bailly-Grandvaux M, Giuffrida L, et al. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields[J]. New J Phys, 2015, 17: 083051. doi: 10.1088/1367-2630/17/8/083051
    [18] Law K F F, Bailly-Grandvaux M, Morace A, et al. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry[J]. Appl Phys Lett, 2016, 108: 091104. doi: 10.1063/1.4943078
    [19] Gao Lan, Ji Hantao, Fiksel G, et al. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current[J]. Phys Plasmas, 2016, 23: 043106. doi: 10.1063/1.4945643
    [20] Goyon C, Pollock B B, Turnbull D P, et al. Ultrafast probing of magnetic field growth inside a laser-driven solenoid[J]. Phys Rev E, 2017, 95: 033208. doi: 10.1103/PhysRevE.95.033208
    [21] Singh P K, Cui Y Q, Adak A, et al. Contrasting levels of absorption of intense femtosecond laser pulses by solids[J]. Scientific Reports, 2015, 5: 17870.
    [22] 张忠厚. 复杂电容器电容计算方法[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(4):701-704. (Zhang Zhonghou. Study on calculation method of complex capacitor[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(4): 701-704 doi: 10.3969/j.issn.1008-0562.2010.04.046
    [23] Tichonchuk V T, Bailly-Grandvaux M, Santos J J, et al. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly[J]. Phys Rev E, 2017, 96: 023202. doi: 10.1103/PhysRevE.96.023202
    [24] Amano Y, Miki Y, Takahashi T, et al. Isochoric heating of foamed metal using pulsed power discharge as a making technique of warm dense matter[J]. Rev Sci Instrum, 2012, 83: 085107. doi: 10.1063/1.4742986
    [25] Davies J R, Bell A R, Haines M G. Short-pulse high-intensity laser-generated fast electron transport into thick solid targets[J]. Phys Rev E, 1997, 56(6): 7193-7203. doi: 10.1103/PhysRevE.56.7193
    [26] Tuohy E J, Lee H T, Fullerton H P. Transient resistance of conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1968, 87(2): 455-462.
    [27] 赵凯华, 陈熙谋. 电磁学(下册)[M]. 第二版. 北京: 高等教育出版社, 1985: 587.

    Zhao Kaihua, Chen Ximou. Electricity and magnetism (Volume 2) [M]. 2nd ed. Beijing: Higher Education Press, 1985: 587
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1649
  • HTML全文浏览量:  363
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-05-13
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回