Effect of gamma irradiation on characteristics of Yb-doped fiber materials
-
摘要: 掺镱光纤是高功率激光器的核心材料,但在高能射线辐照后其应用性能会显著下降,因此有必要对掺镱光纤材料在辐照环境下的性能变化进行深入研究。采用改进型化学气相沉积法结合稀土螯合物掺杂制备了系列光纤预制棒及光纤,测试了光纤在不同剂量下射线辐照前后的高功率输出性能,以及光纤预制棒辐照前后的吸收光谱及镱离子荧光寿命。结果表明:小剂量辐照后掺镱光纤的高功率输出显著下降,通过预制棒吸收光谱可看出主要是因为伽马辐照后使掺镱光纤材料中Al的相关缺陷浓度增多,在可见光区域吸收损耗增加。Ce离子的掺杂通过缓减辐致铝氧空位中心(Al-OHC)色心缺陷的增加,减少Yb离子荧光寿命的下降,可在一定程度上抑制高功率掺镱光纤的辐致暗化。Abstract: Yb-doped fibers are the key materials in high power lasers, its application performance will significantly decrease after irradiation with high-energy rays. Therefore, it is necessary to conduct in-depth research on the performance changes of Yb-doped fiber materials under irradiation. A series of optical fiber preforms and optical fibers were prepared by modified chemical vapor deposition combined with rare-earth chelate-doping method. The high-power output performance of the optical fibers and the optical properties of preforms before and after irradiation were studied. The experimental results show that the high-power output of Yb-doped fiber significantly decreased after low-dose irradiation. It can be seen from the absorption spectra that the main reason is that after irradiation, the Al-related defect concentration in the Yb-doped fiber materials increases, and the absorption loss in the visible region increases. Ce ions doping can reduce the increase of Al-oxygen hole centers (Al-OHCs) color center defects caused by radiation, reduce the decrease of Yb ions fluorescence lifetime, and suppress the radiation darkening of Yb-doped fibers to a certain extent.
-
Key words:
- Yb-doped fiber /
- radiation /
- color center /
- absorption spectra /
- fluorescence lifetime
-
图 6 3#光纤预制棒辐照前后吸收光谱以及高斯拟合。黑线为辐照前,红线为3 kGy剂量辐照后,虚线为高斯拟合所获得的特征吸收峰
Figure 6. Decomposition with Gaussian absorption bands of the absorption spectra of 3# fiber preform measured before and after irradiation. The black (lower) line represents the preform absorbance before irradiation, while the red line represents that after the dose of 3 kGy irradiation. The dashed lines represent the Gaussian components
表 1 光纤预制棒芯棒的元素分析
Table 1. Electron probe microanalysis(EPMA)of optical fiber preforms
No. doping concentration/10-6 Yb Al P Ce 1# 500 4000 8000 0 2# 1000 8000 9000 0 3# 300 2400 2500 150 表 2 光纤预制棒辐照前后荧光寿命
Table 2. Fluorescence lifetime of optical fiber preforms before and after γ-ray irradiation
No. τ1/ms τ2/ms ∆τ/ms 1# 1.039 0.925 0.114 2# 0.967 0.842 0.125 3# 0.826 0.758 0.068 -
[1] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056. doi: 10.1109/3.594865 [2] Jeong Y, Sahu J, Payne D, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088 [3] Brooks C D, Di Teodoro F. 1 mJ energy, 1 MW peak-power, 10 W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier[J]. Optics Express, 2005, 13(22): 8999-9002. doi: 10.1364/OPEX.13.008999 [4] Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 2017, 42(7): 1193-1196. doi: 10.1364/OL.42.001193 [5] 黄宏琪, 赵楠, 陈瑰, 等. γ射线辐照对掺Yb光纤材料性能的影响[J]. 物理学报, 2014, 63:200201. (Huang Hongqi, Zhao Nan, Chen Gui, et al. Effects of γ-radiation on Yb-doped fiber[J]. Acta Physica Sinica, 2014, 63: 200201 doi: 10.7498/aps.63.200201 [6] Fox B P, Schneider Z V, Simmons-Potter K, et al. Gamma radiation effects in Yb-doped optical fiber[C]//Proc of SPIE. 2007: 645328. [7] Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silica based preforms and optical fibers—I: experimental study with canonical samples[J]. IEEE Trans Nuclear Science, 2008, 55(6): 3473-3482. doi: 10.1109/TNS.2008.2007297 [8] Fox B P, Simmons-Potter K, Simmons J H, et al. Radiation damage effects in doped fiber materials[C]//Proc of SPIE. 2008: 68731F. [9] Fox B P, Simmons-Potter K, Thomes W J, et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Trans Nuclear Science, 2010, 57(3): 1618-1625. doi: 10.1109/TNS.2010.2043854 [10] Girard S, Kuhnhenn J A, Brichard B, et al. Radiation effects on silica-based optical fibers: Recent advances and future challenges[J]. IEEE Trans Nuclear Science, 2013, 60(3): 2015-2036. doi: 10.1109/TNS.2012.2235464 [11] Arai K, Namikawa H, Kumata K, et al. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass[J]. Journal of Applied Physics, 1986, 59(10): 3430-3436. doi: 10.1063/1.336810 [12] Origlio G, Messina F, Girard S, et al. Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms[J]. Journal of Applied Physics, 2010, 108: 123103. doi: 10.1063/1.3517479 [13] Shao Chongyun, Ren Jinjun, Wang Fan, et al. Origin of radiation-induced darkening in Yb<sup>3+</sup>/Al<sup>3+</sup>/P<sup>5+</sup> doped silica glasses: Effect of P/Al ratio[J]. Journal of Physical Chemistry B, 2018, 122(10): 2809-2820. doi: 10.1021/acs.jpcb.7b12587 [14] Engholm M, Jelger P, Laurell F, et al. Improved photo darkening resistivity in ytterbium-doped fiber lasers by cerium codooping[J]. Optics Letters, 2009, 34(8): 1285-1287. doi: 10.1364/OL.34.001285 [15] Engholm M, Norin L. Ytterbium-doped fibers co-doped with cerium: Next generation of fibers for high power fiber lasers?[C]// Proc of SPIE. 2010: 758008. [16] Zhao N, Wang Y B, Li J M, et al. Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers[J]. Applied Physics A, 2016, 122(2): 75. doi: 10.1007/s00339-015-9576-3 [17] Deschamps T, Vezin, H, Gonnet C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Optics Express, 2013, 21(7): 8382-8392. doi: 10.1364/OE.21.008382 [18] Franck M, Angela G, Mourad B, et al. Systematic investigation of composition effects on the radiation-induced attenuation mechanisms of aluminosilicate, Yb-doped silicate, Yb- and Yb, Ce-doped aluminosilicate fiber preforms[J]. Optical Materials Express, 2019, 9(6): 2466-2489. doi: 10.1364/OME.9.002466 [19] Arai T, Ichii K, Tanigawa S, et al. Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses[C]//Proc of SPIE. 2011: 79140K. [20] Shao Chongyun, Xu Wenbin, Nadege O, et al. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses[J]. Journal of Applied Physics, 2016, 120: 153101. doi: 10.1063/1.4964878 [21] Arai T, Ichii K, Tanigawa S, et al. Defect analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses[C]// /Optical Fiber Communication Conference. 2009: 1-3. [22] Jackson S. Color centers in a cerium-containing silicate glass[J]. The Journal of Chemical Physics, 1962, 37(4): 836-841. doi: 10.1063/1.1733170 [23] Jackson S. Color-center kinetics in cerium-containing glass[J]. The Journal of Chemical Physics, 1965, 33(7): 2442-2451. [24] Kitabayashi T, Ikeda M, Nakaiet M, et al. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]//Optical Fiber Communication Conference. 2006: 1283-1285. [25] Feng Wei, She Shengfei, Wang Pengfei, et al. Photoluminescence of Yb<sup>3+</sup>/Ce<sup>3+</sup> co-doped aluminosilicate glasses under ultraviolet irradiation[J]. Journal of Non-Crystalline Solids, 2020, 528: 119540. doi: 10.1016/j.jnoncrysol.2019.119540 [26] 盛于邦, 邢瑞先, 栾怀训, 等. 伽马辐照对掺镱硅酸盐玻璃光学性能的影响[J]. 无机材料学报, 2012, 27(8):860-864. (Sheng Yubang, Xing Ruixian, Luan Huaixun, et al. Gamma radiation effects on the optical properties of Yb-doped silicate glasses[J]. Journal of Inorganic Materials, 2012, 27(8): 860-864 doi: 10.3724/SP.J.1077.2012.11588 [27] Piccoli R, Robin T, David Méchin, et al. Impact of photodarkening on Yb lifetime in Al-silicate fibres and on the rate-equation system[C]// Proc of SPIE. 2014: 89820T.