留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伽马辐照对掺镱光纤材料特性影响的研究

李奋飞 周晓燕 张魁宝 陈进湛 高聪 张立华 石兆华 夏汉定 叶鑫 吴卫东 李波

李奋飞, 周晓燕, 张魁宝, 等. 伽马辐照对掺镱光纤材料特性影响的研究[J]. 强激光与粒子束, 2020, 32: 081003. doi: 10.11884/HPLPB202032.200059
引用本文: 李奋飞, 周晓燕, 张魁宝, 等. 伽马辐照对掺镱光纤材料特性影响的研究[J]. 强激光与粒子束, 2020, 32: 081003. doi: 10.11884/HPLPB202032.200059
Li Fenfei, Zhou Xiaoyan, Zhang Kuibao, et al. Effect of gamma irradiation on characteristics of Yb-doped fiber materials[J]. High Power Laser and Particle Beams, 2020, 32: 081003. doi: 10.11884/HPLPB202032.200059
Citation: Li Fenfei, Zhou Xiaoyan, Zhang Kuibao, et al. Effect of gamma irradiation on characteristics of Yb-doped fiber materials[J]. High Power Laser and Particle Beams, 2020, 32: 081003. doi: 10.11884/HPLPB202032.200059

伽马辐照对掺镱光纤材料特性影响的研究

doi: 10.11884/HPLPB202032.200059
基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金项目(U1830203)
详细信息
    作者简介:

    李奋飞(1994—),男,硕士研究生,从事特种光纤研究;710131384@qq.com

    通讯作者:

    周晓燕(1985—),女,博士,副研究员,从事特种光纤研究;zhouxy@caep.cn

  • 中图分类号: O46

Effect of gamma irradiation on characteristics of Yb-doped fiber materials

  • 摘要: 掺镱光纤是高功率激光器的核心材料,但在高能射线辐照后其应用性能会显著下降,因此有必要对掺镱光纤材料在辐照环境下的性能变化进行深入研究。采用改进型化学气相沉积法结合稀土螯合物掺杂制备了系列光纤预制棒及光纤,测试了光纤在不同剂量下射线辐照前后的高功率输出性能,以及光纤预制棒辐照前后的吸收光谱及镱离子荧光寿命。结果表明:小剂量辐照后掺镱光纤的高功率输出显著下降,通过预制棒吸收光谱可看出主要是因为伽马辐照后使掺镱光纤材料中Al的相关缺陷浓度增多,在可见光区域吸收损耗增加。Ce离子的掺杂通过缓减辐致铝氧空位中心(Al-OHC)色心缺陷的增加,减少Yb离子荧光寿命的下降,可在一定程度上抑制高功率掺镱光纤的辐致暗化。
  • 图  1  光纤激光输出功率及斜率效应

    Figure  1.  Fiber laser output characteristics and slope efficiency with different dose

    图  2  1#掺镱光纤预制棒吸收光谱

    Figure  2.  Absorption spectra of 1# Yb-doped fiber preform with different doses

    图  3  不同掺镱光纤预制棒辐照前后的吸收光谱变化

    Figure  3.  Absorption spectra of Yb-doped fiber preform irradiated with different doses

    图  4  1#光纤预制棒经3 kGy剂量辐照下的吸收光谱以及高斯拟合,虚线为高斯拟合所获得的特征吸收峰

    Figure  4.  Decomposition with Gaussian absorption bands of the absorption spectra of 1# fiber preform measured at the dose of 3 kGy, the dashed lines represent the Gaussian components

    图  5  2#光纤预制棒经3 kGy剂量辐照下吸收光谱以及高斯拟合,虚线为高斯拟合所获得的特征吸收峰

    Figure  5.  Decomposition with Gaussian absorption bands of the absorption spectra of 2# fiber preform measured at the dose of 3 kGy, the dashed lines represent the Gaussian components

    图  6  3#光纤预制棒辐照前后吸收光谱以及高斯拟合。黑线为辐照前,红线为3 kGy剂量辐照后,虚线为高斯拟合所获得的特征吸收峰

    Figure  6.  Decomposition with Gaussian absorption bands of the absorption spectra of 3# fiber preform measured before and after irradiation. The black (lower) line represents the preform absorbance before irradiation, while the red line represents that after the dose of 3 kGy irradiation. The dashed lines represent the Gaussian components

    图  7  能量传递示意图

    Figure  7.  Schematic diagram of energy transfer of Yb-doped fiber preform under γ irradiation

    表  1  光纤预制棒芯棒的元素分析

    Table  1.   Electron probe microanalysis(EPMA)of optical fiber preforms

    No.doping concentration/10-6
    YbAlPCe
    1#500400080000
    2#1000800090000
    3#30024002500150
    下载: 导出CSV

    表  2  光纤预制棒辐照前后荧光寿命

    Table  2.   Fluorescence lifetime of optical fiber preforms before and after γ-ray irradiation

    No.τ1/msτ2/msτ/ms
    1# 1.039 0.925 0.114
    2# 0.967 0.842 0.125
    3# 0.826 0.758 0.068
    下载: 导出CSV
  • [1] Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056. doi: 10.1109/3.594865
    [2] Jeong Y, Sahu J, Payne D, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
    [3] Brooks C D, Di Teodoro F. 1 mJ energy, 1 MW peak-power, 10 W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier[J]. Optics Express, 2005, 13(22): 8999-9002. doi: 10.1364/OPEX.13.008999
    [4] Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 2017, 42(7): 1193-1196. doi: 10.1364/OL.42.001193
    [5] 黄宏琪, 赵楠, 陈瑰, 等. γ射线辐照对掺Yb光纤材料性能的影响[J]. 物理学报, 2014, 63:200201. (Huang Hongqi, Zhao Nan, Chen Gui, et al. Effects of γ-radiation on Yb-doped fiber[J]. Acta Physica Sinica, 2014, 63: 200201 doi: 10.7498/aps.63.200201
    [6] Fox B P, Schneider Z V, Simmons-Potter K, et al. Gamma radiation effects in Yb-doped optical fiber[C]//Proc of SPIE. 2007: 645328.
    [7] Girard S, Ouerdane Y, Origlio G, et al. Radiation effects on silica based preforms and optical fibers—I: experimental study with canonical samples[J]. IEEE Trans Nuclear Science, 2008, 55(6): 3473-3482. doi: 10.1109/TNS.2008.2007297
    [8] Fox B P, Simmons-Potter K, Simmons J H, et al. Radiation damage effects in doped fiber materials[C]//Proc of SPIE. 2008: 68731F.
    [9] Fox B P, Simmons-Potter K, Thomes W J, et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Trans Nuclear Science, 2010, 57(3): 1618-1625. doi: 10.1109/TNS.2010.2043854
    [10] Girard S, Kuhnhenn J A, Brichard B, et al. Radiation effects on silica-based optical fibers: Recent advances and future challenges[J]. IEEE Trans Nuclear Science, 2013, 60(3): 2015-2036. doi: 10.1109/TNS.2012.2235464
    [11] Arai K, Namikawa H, Kumata K, et al. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass[J]. Journal of Applied Physics, 1986, 59(10): 3430-3436. doi: 10.1063/1.336810
    [12] Origlio G, Messina F, Girard S, et al. Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms[J]. Journal of Applied Physics, 2010, 108: 123103. doi: 10.1063/1.3517479
    [13] Shao Chongyun, Ren Jinjun, Wang Fan, et al. Origin of radiation-induced darkening in Yb<sup>3+</sup>/Al<sup>3+</sup>/P<sup>5+</sup> doped silica glasses: Effect of P/Al ratio[J]. Journal of Physical Chemistry B, 2018, 122(10): 2809-2820. doi: 10.1021/acs.jpcb.7b12587
    [14] Engholm M, Jelger P, Laurell F, et al. Improved photo darkening resistivity in ytterbium-doped fiber lasers by cerium codooping[J]. Optics Letters, 2009, 34(8): 1285-1287. doi: 10.1364/OL.34.001285
    [15] Engholm M, Norin L. Ytterbium-doped fibers co-doped with cerium: Next generation of fibers for high power fiber lasers?[C]// Proc of SPIE. 2010: 758008.
    [16] Zhao N, Wang Y B, Li J M, et al. Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers[J]. Applied Physics A, 2016, 122(2): 75. doi: 10.1007/s00339-015-9576-3
    [17] Deschamps T, Vezin, H, Gonnet C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Optics Express, 2013, 21(7): 8382-8392. doi: 10.1364/OE.21.008382
    [18] Franck M, Angela G, Mourad B, et al. Systematic investigation of composition effects on the radiation-induced attenuation mechanisms of aluminosilicate, Yb-doped silicate, Yb- and Yb, Ce-doped aluminosilicate fiber preforms[J]. Optical Materials Express, 2019, 9(6): 2466-2489. doi: 10.1364/OME.9.002466
    [19] Arai T, Ichii K, Tanigawa S, et al. Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses[C]//Proc of SPIE. 2011: 79140K.
    [20] Shao Chongyun, Xu Wenbin, Nadege O, et al. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses[J]. Journal of Applied Physics, 2016, 120: 153101. doi: 10.1063/1.4964878
    [21] Arai T, Ichii K, Tanigawa S, et al. Defect analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses[C]// /Optical Fiber Communication Conference. 2009: 1-3.
    [22] Jackson S. Color centers in a cerium-containing silicate glass[J]. The Journal of Chemical Physics, 1962, 37(4): 836-841. doi: 10.1063/1.1733170
    [23] Jackson S. Color-center kinetics in cerium-containing glass[J]. The Journal of Chemical Physics, 1965, 33(7): 2442-2451.
    [24] Kitabayashi T, Ikeda M, Nakaiet M, et al. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]//Optical Fiber Communication Conference. 2006: 1283-1285.
    [25] Feng Wei, She Shengfei, Wang Pengfei, et al. Photoluminescence of Yb<sup>3+</sup>/Ce<sup>3+</sup> co-doped aluminosilicate glasses under ultraviolet irradiation[J]. Journal of Non-Crystalline Solids, 2020, 528: 119540. doi: 10.1016/j.jnoncrysol.2019.119540
    [26] 盛于邦, 邢瑞先, 栾怀训, 等. 伽马辐照对掺镱硅酸盐玻璃光学性能的影响[J]. 无机材料学报, 2012, 27(8):860-864. (Sheng Yubang, Xing Ruixian, Luan Huaixun, et al. Gamma radiation effects on the optical properties of Yb-doped silicate glasses[J]. Journal of Inorganic Materials, 2012, 27(8): 860-864 doi: 10.3724/SP.J.1077.2012.11588
    [27] Piccoli R, Robin T, David Méchin, et al. Impact of photodarkening on Yb lifetime in Al-silicate fibres and on the rate-equation system[C]// Proc of SPIE. 2014: 89820T.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1271
  • HTML全文浏览量:  287
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-07
  • 修回日期:  2020-07-30
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回