留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单脉冲飞秒激光烧蚀炸药过程的热效应研究

刘嘉锡 伍俊英 杨利军 李姚江 吴姣姣 鲁建英 陈朗

刘嘉锡, 伍俊英, 杨利军, 等. 单脉冲飞秒激光烧蚀炸药过程的热效应研究[J]. 强激光与粒子束, 2020, 32: 071007. doi: 10.11884/HPLPB202032.200061
引用本文: 刘嘉锡, 伍俊英, 杨利军, 等. 单脉冲飞秒激光烧蚀炸药过程的热效应研究[J]. 强激光与粒子束, 2020, 32: 071007. doi: 10.11884/HPLPB202032.200061
Liu Jiaxi, Wu Junying, Yang Lijun, et al. Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation[J]. High Power Laser and Particle Beams, 2020, 32: 071007. doi: 10.11884/HPLPB202032.200061
Citation: Liu Jiaxi, Wu Junying, Yang Lijun, et al. Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation[J]. High Power Laser and Particle Beams, 2020, 32: 071007. doi: 10.11884/HPLPB202032.200061

单脉冲飞秒激光烧蚀炸药过程的热效应研究

doi: 10.11884/HPLPB202032.200061
基金项目: 爆炸科学与技术国家重点实验室开放基金项目(KFJJ20-04M)
详细信息
    作者简介:

    刘嘉锡(1994—),男,博士研究生,从事激光与物质相互作用等研究;305484560@qq.com

    通讯作者:

    伍俊英(1976—),女,副教授,博导,从事激光与物质相互作用、含能材料热安全性等研究;wjy1312@bit.edu.cn

  • 中图分类号: TJ55

Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation

  • 摘要: 飞秒激光能够在极短时间内烧蚀炸药产生高温高压等离子体。可以利用飞秒激光对含能材料或含能元器件进行精密加工。深入认识飞秒激光烧蚀炸药过程中,炸药内部的热效应是发展飞秒激光加工炸药技术的基础。建立了单脉冲飞秒激光烧蚀炸药过程的流固耦合计算模型,考虑了在高温高压等离子体和炸药自热反应的共同作用下,炸药内部的热效应。对飞秒激光烧蚀TNT炸药过程进行了流体力学数值模拟。计算结果表明:TNT炸药中未烧蚀区域产生了热效应,峰值温度高于TNT炸药的点火温度,但由于炸药内热效应区域极小,高温持续时间极短,因此炸药内温度迅速下降,没有发生点火现象。
  • 图  1  飞秒激光烧蚀炸药的原理示意图

    Figure  1.  Schematic diagram of femtosecond laser ablation of explosive

    图  2  飞秒激光烧蚀炸药的流固耦合计算模型示意图

    Figure  2.  Schematic diagram of fluid-solid coupling calculation model of femtosecond laser ablation of explosive

    图  3  空气域中压力分布图(200 μJ)

    Figure  3.  Pressure distribution in the air(200 μJ)

    图  4  空气域中等离子体相分布图(200 μJ)

    Figure  4.  Plasma distribution in the air(200 μJ)

    图  5  空气域中温度分布图 (200 μJ)

    Figure  5.  Temperature distribution in the air(200 μJ)

    图  6  TNT炸药固体未烧蚀区域的温度分布图(200 μJ)

    Figure  6.  Temperature distribution in the unablated zones of TNT(200 μJ)

    图  7  TNT中温度监测点的位置示意图

    Figure  7.  Schematic diagram of the temperature monitors in TNT

    图  8  TNT固体中各监测点温度随时间变化图

    Figure  8.  Temperature changes over time at each temperature monitoring point in TNT

    图  9  TNT固体中轴向不同监测点温度随时间变化曲线

    Figure  9.  Temperature changes over time at each axial temperature monitoring point in TNT

    图  10  TNT固体中径向不同监测点温度随时间变化曲线

    Figure  10.  Temperature changes over time at each radial temperature monitoring point in TNT

    表  1  TNT的物性参数

    Table  1.   Physical properties of TNT

    explosivedensity/(kg·m−3specific thermal capacity/(J·kg−1·K−1thermal conductivity/(W·m−1·K−1ignition temperature/K
    TNT1 5801 3800.5513
    下载: 导出CSV

    表  2  TNT的多步热分解反应动力学参数

    Table  2.   Kinetic parameters of multi-step thermal decomposition reaction of TNT

    stepE/(kJ·mol−1Z/s−1Q/(kJ·kg−1
    1200.0006.0×1014−125.575
    2144.4121.957×10123 767.267
    3140.2262.391×10133 592.840
    下载: 导出CSV
  • [1] 王清月. 飞秒激光在前沿技术中的应用[M]. 北京: 国防工业出版社, 2015.

    Wang Qingyue. Femtosecond laser application in advanced technologies[M]. Beijing: National Defense Industry Press, 2015
    [2] Chin A H, Schoenlein R W, Glover T E, et al. Ultrafast structural dynamics in InSb probed by time-resolved X-ray diffraction[J]. Physical Review Letters, 1999, 83: 336-339. doi: 10.1103/PhysRevLett.83.336
    [3] 杨建军. 飞秒激光超精细“冷”加工技术及其应用[J]. 激光与光电子学进展, 2004, 41(4):42-52. (Yang Jianjun. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 2004, 41(4): 42-52
    [4] Roeske F, Banks R E, Armstronget J P, et al. Laser cutting of pressed explosives [R]. UCRL-JC-128373 Rev 1, 1998.
    [5] Roos E V, Benterou J J, Lee R S, et al. Femtosecond laser interaction with energetic materials[C]// Proc of SPIE. 2002, 4670: 415-423.
    [6] Palmer J A, Welle E J. An ultrashort pulse laser lathe for axisymmetric micromachining of explosives[C]//Proc of SPIE. 2007: 646015.
    [7] Mcgrane S D, Grieco A, Ramos K J, et al. Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation[J]. Journal of Applied Physics, 2009, 105: 073505. doi: 10.1063/1.3091270
    [8] Qiu T Q, Tien C L. Short-pulse laser heating on metals[J]. International Journal of Heat and Mass Transfer, 1992, 35: 719-726. doi: 10.1016/0017-9310(92)90131-B
    [9] Michael D P, C. Stuart, P S, Banks, et al. Laser machining of explosives: US6150630[P]. 2000-11-21
    [10] Howell J R, Siegel R, Mengüç M P. Thermal radiation heat transfer[M]. New York: Taylor & Francis Group, 2010.
    [11] Cheng P. Theory of two-dimensional radiating gas flow by a moment method[J]. AIAA Journal, 1964, 2: 1662-1664. doi: 10.2514/3.2645
    [12] Luan Y T, Chyou Y P, Wang T. Numerical analysis of gasification performance via finite-rate model in a cross-type two-stage gasifier[J]. International Journal of Heat and Mass Transfer, 2013, 57: 558-566. doi: 10.1016/j.ijheatmasstransfer.2012.10.026
    [13] Isbell R A, Brewster M Q. Optical properties of energetic materials: RDX, HMX, AP, NC/NG, and HTPB[J]. Propellants, Explosives, Pyrotechnics, 1998, 23: 218-224. doi: 10.1002/(SICI)1521-4087(199808)23:4<218::AID-PREP218>3.0.CO;2-A
    [14] Aduev B P, Belokurov G M, Nurmukhametov D R, et al. Studying the optical properties of hexogen–aluminum composites[J]. Optics & Spectroscopy, 2018, 125(5): 632-639.
    [15] MeGuire R R, Tarver C M. Chemical decomposition models for the thermal explosion of confined HMX, TATB, RDX and TNT explosive[C]//Proceeding of the 7th International Detonation Symposium. 1981.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1636
  • HTML全文浏览量:  387
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 修回日期:  2020-05-20
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回