留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Suppression of higher diffraction orders using quasiperiodic array of rectangular holes with large size tolerance

Wei Lai Chen Yong Wang Shaoyi Fan Quanping Zhang Qiangqiang Zhang Zhong Wang Zhanshan Cao Leifeng

魏来, 陈勇, 王少义, 等. 大公差宽容度矩形孔准周期阵列实现对高阶衍射的有效抑制[J]. 强激光与粒子束, 2020, 32: 072002. doi: 10.11884/HPLPB202032.200117
引用本文: 魏来, 陈勇, 王少义, 等. 大公差宽容度矩形孔准周期阵列实现对高阶衍射的有效抑制[J]. 强激光与粒子束, 2020, 32: 072002. doi: 10.11884/HPLPB202032.200117
Wei Lai, Chen Yong, Wang Shaoyi, et al. Suppression of higher diffraction orders using quasiperiodic array of rectangular holes with large size tolerance[J]. High Power Laser and Particle Beams, 2020, 32: 072002. doi: 10.11884/HPLPB202032.200117
Citation: Wei Lai, Chen Yong, Wang Shaoyi, et al. Suppression of higher diffraction orders using quasiperiodic array of rectangular holes with large size tolerance[J]. High Power Laser and Particle Beams, 2020, 32: 072002. doi: 10.11884/HPLPB202032.200117

大公差宽容度矩形孔准周期阵列实现对高阶衍射的有效抑制

doi: 10.11884/HPLPB202032.200117
详细信息
  • 中图分类号: O436.1; O434.13

Suppression of higher diffraction orders using quasiperiodic array of rectangular holes with large size tolerance

Funds: National Key Research and Development Program of China (2017YFA0206001); National Natural Science Foundation of China (11805179)
More Information
    Author Bio:

    Wei Lai (1983—), male, PhD candidate, engaged in X-ray optics and plasma diagnostics; future718@yeah.net

    Corresponding author: Cao Leifeng (1967—), male, PhD, engaged in X-ray optics and plasma diagnostics; leifeng.cao@caep.cn
  • 摘要: 传统光栅的基础研究和应用研究进展一直备受关注。然而,高阶衍射污染使传统光栅获得的光谱纯度受到严重影响。为了抑制高阶衍射贡献,人们提出了许多单级或准单级光栅的设计方案,但它们对高阶衍射的抑制效果不可避免地受到加工精度的限制。提出了一种准周期矩形孔阵列光栅,通过优化矩形孔的概率密度分布函数,获得了比以往设计更大的加工误差宽容度。对这种光栅的衍射特性进行了分析研究。理论计算表明,即使孔径相对误差超过20%,光栅也可以完全抑制二阶、三阶和四阶衍射,五阶衍射效率与一阶衍射效率之比小于0.01%,大大降低了对加工精度的要求。
  • Figure  1.  Schematic of the distribution of holes in the array: from δ-function to arbitrary positive function ${\mathit{\Gamma}} \left( {{\xi _n},{\eta _n}} \right)$

    Figure  2.  (a) Design for a quasi-periodical hole array: in each lattice (d×d square), a rectangular hole with side lengths of d/6 and d is positioned randomly on the ξn axis and has a trapezoidal distribution profile shown in (b)

    Figure  3.  Comparison between far-field diffraction patterns of a quasi-periodical array shown in Fig. 2 when HL=100 and a periodic grating with a duty cycle of 1∶5 and 201 periods

    Figure  4.  (a) Intensity profiles of Fig. 3(a)(c) across the line qλ/2d (indicated by yellow dashed lines in Fig. 3); (b) numerical results of Eq. (1) across the p-axis for the rectangular holes with side lengths of d/5 and d (red dot), and 2d/15 and d (black line).

  • [1] Kallman T, Evans D A, Marshall H, et al. A census of X-ray gas in NGC 1068: Results from 450 ks of Chandra high energy transmission grating observations[J]. Astrophys J, 2014, 780: 121.
    [2] Wang Q D, Nowak M A, Markoff S B, et al. Dissecting X-ray emitting gas around the center of our galaxy[J]. Science, 2013, 341(30): 981-983.
    [3] Tzanavaris P, Yaqoob T. New constraints on the geometry and kinematics of matter surrounding the accretion flow in X-ray binaries from Chandra high-energy transmission grating X-ray spectroscopy[J]. Astrophys J, 2018, 855: 25. doi: 10.3847/1538-4357/aaaab6
    [4] Shpilman Z, Hurvitz G, Danon L, et al. A combined sinusoidal transmission grating spectrometer and X-ray diode array diagnostics for time-resolved spectral measurements in laser plasma experiments[J]. Rev Sci Instrum, 2019, 90: 013501. doi: 10.1063/1.5051486
    [5] Kühne M, Müller P. Higher order contributions in the synchrotron radiation spectrum of a toroidal grating monochromator determined by the use of a transmission grating[J]. Rev Sci Instrum, 1989, 60: 2101. doi: 10.1063/1.1140836
    [6] Sokolov A A, Eggenstein F, Erko A, et al. An XUV optics beamline at BESSY II [C]//Proc of SPIE. 2014: 92060J.
    [7] Suits A G, Heimann P, Yang Xueming, et al. A differentially pumped harmonic filter on the chemical dynamics beamline at Advanced Light Source[J]. Rev Sci Instrum, 1995, 66: 4841. doi: 10.1063/1.1146161
    [8] Heimann P A, Koike M, Hsu C W, et al. Performance of the vacuum ultraviolet high-resolution and high-flux beamline for chemical dynamics studies at the Advanced Light Source[J]. Rev Sci Instrum, 1997, 68: 1945. doi: 10.1063/1.1148082
    [9] Zhou Hongjun, Wang Guanjun, Zheng Jinjin, et al. Higher order harmonics contribution and suppression in metrology beamline [C]//Proc of SPIE. 2010: 75445
    [10] Cao Leifeng, Förster E, Fuhrmann A, et al. Single order X-ray diffraction with binary sinusoidal transmission grating[J]. Appl Phys Lett, 2007, 90: 053501. doi: 10.1063/1.2435618
    [11] Zang Huaping, Wang Chuanke, Cao Leifeng, et al. Elimination of higher-order diffraction using zigzag transmission grating in soft X-ray region[J]. Appl Phys Lett, 2012, 100: 111904. doi: 10.1063/1.3693395
    [12] Liu Yuwei, Zhu Xiaoli, Gao Yulin, et al. Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings[J]. Sci Rep, 2015, 5: 16502. doi: 10.1038/srep16502
    [13] Fan Quanping, Liu Yuwei, Wang Chuanke, et al. Single-order diffraction grating designed by trapezoidal transmission function[J]. Opt Letts, 2015, 40: 2657. doi: 10.1364/OL.40.002657
    [14] Liu Ziwei, Shi Lina, Pu Tanchao, et al. Two-dimensional gratings of hexagonal holes for high order diffraction suppression[J]. Opt Express, 2017, 25(2): 1339. doi: 10.1364/OE.25.001339
    [15] Kuang Longyu, Wang Chuanke, Wang Zhebin, et al. Quantum-dot-array diffraction grating with single order diffraction property for soft X-ray region[J]. Rev Sci Instrum, 2010, 81: 073508. doi: 10.1063/1.3464197
    [16] Li Hailiang, Shi Lina, Wei Lai, et al. Higher-order diffraction suppression of free-standing quasiperiodic nanohole arrays in the X-ray region[J]. Appl Phys Lett, 2017, 110: 041104. doi: 10.1063/1.4974940
    [17] Gao Yulin, Zhou Weimin, Wei Lai, et al. Diagnosis of the soft X-ray spectrum emitted by laser-plasmas using a spectroscopic photon sieve[J]. Laser & Particle Beams, 2012, 30(2): 313-317.
    [18] Chen Yong, Wei Lai, Qian Feng, et al. Higher order harmonics suppression in extreme ultraviolet and soft X-ray[J]. Chin Phys B, 2018, 27: 024101. doi: 10.1088/1674-1056/27/2/024101
    [19] Wei Lai, Qian Feng, Yang Zuhua, et al. Diffraction properties of quasi-random pinhole arrays: suppression of higher orders and background fluctuations[J]. J Mod Opt, 2017, 64(21): 2420. doi: 10.1080/09500340.2017.1367853
    [20] Wei Lai, Chen Yong, Wang Shaoyi, et al. Suppression of higher diffraction orders in the extreme ultraviolet range by a reflective quasi-random square nano-pillar array[J]. Rev Sci Instrum, 2018, 89: 093110. doi: 10.1063/1.5034764
    [21] Hua Y L, Gao N, Xie C Q. Fabrication of ultralarge single order diffraction grating for soft X-ray monochromator [C]//IEEE Symposium on Design, Test, Integration and Packaging of MEMS / MOEMS. 2016: 1–4.
  • 加载中
图(4)
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  306
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-06-23
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回