留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光惯性约束聚变研究中高时空诊断技术研究进展

王峰 张兴 理玉龙 陈伯伦 陈忠靖 徐涛 刘欣城 赵航 任宽 杨家敏 江少恩 张保汉

王峰, 张兴, 理玉龙, 等. 激光惯性约束聚变研究中高时空诊断技术研究进展[J]. 强激光与粒子束, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
引用本文: 王峰, 张兴, 理玉龙, 等. 激光惯性约束聚变研究中高时空诊断技术研究进展[J]. 强激光与粒子束, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
Citation: Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136

激光惯性约束聚变研究中高时空诊断技术研究进展

doi: 10.11884/HPLPB202032.200136
基金项目: 国家重点研发计划项目(2017YFA0403300);国家自然科学基金项目(11805184,11805178,11805185);中国工程物理研究院院长基金项目(YZJJLX2019011);科学挑战专题项目(TZ2016001);中物院激光聚变研究中心青年人才基金项目(RCFPD4-2020-1)
详细信息
    作者简介:

    王 峰(1975—),男,博士,研究员,从事激光聚变诊断研究;lfrc_wangfeng@163.com

  • 中图分类号: TN249

Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion

  • 摘要: 对国内激光惯性约束聚变(ICF)领域高时空分辨技术的最新进展进行了比较全面的介绍。针对热斑诊断时间分辨优于10 ps、空间分辨优于10 μm、能区10~30 keV的需求,从光学、X射线、核诊断和计算成像几个角度,比较系统地介绍了最新的进展。光学领域主要介绍基于泵浦探测技术的全光扫描和全光分幅技术。全光扫描技术的时间分辨可以达到200 fs,全光分幅的时间分辨可以达到5 ps,空间分辨可以达到5 μm。该系统的主要部件为光学器件,在ICF未来的强电磁、强电离环境下有很好的应用前景。X射线系统主要介绍最近几年发展的高分辨KB显微镜,其采用STTS构型,可将空间分辨提高到3 μm,满足当前高分辨的需求。漂移管技术的时间分辨可以达到10 ps,作为一种正在发展的技术,对此进行了较为全面的分析。中子成像系统主要介绍了高空间分辨的记录系统以及对应的瞄准技术的进展,其空间分辨可以达到20~25 μm。计算成像作为一个全新的分支,最近引起了ICF领域的广泛关注。着重介绍了三维光场技术和在高时空分辨领域有很好应用前景的压缩感知超快成像(CUP)技术,对其可能在ICF领域中的应用提出了设想。
  • 图  1  单点脉冲行为全光诊断技术示意图

    Figure  1.  Schematic diagram of all-optical diagnostic technology for single point pulse behavior measurement

    图  2  单脉冲瞬态行为的典型测量结果

    Figure  2.  Typical measurement results of single pulse transient behavior

    图  3  基于光折变效应的高时间分辨全光扫描诊断技术

    Figure  3.  Optical path diagram of high time-resolving all optical scanning diagnostic technology based on photorefractive effect

    图  4  全光分幅成像诊断技术示意图

    Figure  4.  Schematic diagram of all-optical framing imaging diagnostic technique

    图  5  全光分幅成像诊断转换体时间响应数据

    Figure  5.  Time response data of all-optical frame imaging diagnostic converter

    图  6  全反射式宽能带KB显微成像系统光路结构

    Figure  6.  Optic design of the reflective KB microscope

    图  7  (a)成像系统能量响应曲线和(b) 6 keV X射线反射率空间分布

    Figure  7.  (a) Energy responses of the KB microscope and (b) the reflectivity spatial distribution of 6 keV X-ray

    图  8  全反射式KB成像系统的四象限网格成像图和空间分辨分析

    Figure  8.  Backlit image of the four-phase mesh and the analysis of the spatial resolution of full reflection KB imaging system

    图  9  全反射式KB成像系统测量的直接驱动爆推靶热斑和间接驱动内爆热斑

    Figure  9.  Measured hot spot images in the exploding pusher target and the indirectly driven implosions

    图  10  多层膜准单能响应KB显微成像系统光路结构

    Figure  10.  Optics design of the multi-layer coated quasi-monenergistic response KB microscope

    图  11  (a)多层膜准单能响应KB显微成像各通道反射率特征(b)2 kJ/1 ns激光驱动背光的1000目Ni网格成像(c)两端黑腔驱动内爆热斑成像

    Figure  11.  Throughout response of the multi-layer coated KB microscope (a) and the backlit image of an 1000# Ni mesh (b) and the hot spot image in the hohlraum driven implosion (c)

    图  12  KBA显微成像系统每一成像维度的成像原理示意图

    Figure  12.  Schematic diagram of imaging principle for each imaging dimension of KBA micro imaging system

    图  13  (a)双通道KBA-KB成像系统结构示意图(b)600目Au网格背光成像

    Figure  13.  (a)structural diagram of dual channel KBA-KB imaging system;(b)the backlit image of a 600# Au mesh

    图  14  (a)AKB成像系统结构示意图(b)弧矢方向和子午方向的AKB成像光路示意图

    Figure  14.  (a) Structural diagram of the AKB imaging system;(b) optics diagram of the AKB imaging in sagittal and tangential directions

    图  15  (a)中物院激光聚变研究中心自研球面弯晶及(b)激光装置成像测试结果

    Figure  15.  (a) Spherically bent crystal samples fabricated by LFRC and (b) the test result at laser facility

    图  16  诊断平台搭载球面弯晶单能成像系统结构示意图

    Figure  16.  Diagram of the monochromatic imaging system with spherical crystal installed on the DIM

    图  17  球面弯晶单能成像系统应用于二维背光成像测量结果

    Figure  17.  2D radiography applications of the monochromatic imaging system with spherical crystal

    图  18  球面弯晶单能成像系统应用于内爆压缩流线测量结果

    Figure  18.  Implosion trajectory measurement image by the monochromatic imaging system with spherical crystal

    图  19  (a)SLOS结构图和(b)光电子展宽原理示意图

    Figure  19.  (a)Single line-of-sight (SLOS) X-ray imager and(b) schematic diagram of photoelectron expanding principle

    图  20  (a)四端馈入阴极结构示意图和(b)四通道合成波形

    Figure  20.  (a)Schematic diagram of four end fed cathode structure and(b)four channel composite waveforms

    图  21  (a)双镜头短磁聚焦透镜漂移管照片,(b)调节两个磁透镜的电流,可以获得10 lp/mm的分辨

    Figure  21.  (a)Photo of drift tube of double lens short magnetic focusing lens and(b)image of adjusting the current of two magnetic lenses to obtain 10 lp/mm resolution

    图  22  中子半影成像几何模型

    Figure  22.  Geometric model for neutron penumbral imaging

    图  23  编码孔几何尺寸设计及对应几何分辨率

    Figure  23.  Designed biconic-shaped geometric aperture parameters and the spatial resolution contributed by the aperture

    图  24  中子图像探测器线扩展函数实验测量结果

    Figure  24.  Measured line-spread function of the neutron image detector

    图  25  基于微透镜阵列的光场相机成像原理图

    Figure  25.  Principle of the light field camera

    表  1  国际上常见的高时间分辨的几个技术状态比较

    Table  1.   Common techniques for high temporal resolution purposes

    diagnostic equipmentradiationtemporal resolution/ps1D/2Dframe
    Multi-MCPoptical/X-ray50~802D,33 μm~16
    DIXIX-ray102D,100 μm~16
    Streak Camera1)optical/X-ray0.51D,50 μm——
    CUPoptical/X-ray22D,100 μm20−30 or more
    STAMP2)optical~0.12D,10 μm>6
      Note:1)The product introduction currently available for fs streak camera comes from Hamamatsu Photonics. As the product needs to be triggered by fs pulses, it has not been applied in ICF researches internationally and domestically. ;2)The Sequentially Timed All Optical Mapping Photography (STAMP) technology, as a quite new idea, can help and learn from the overall technical system of ICF. However, it is oriented to basic and laboratory research, not fit for large ICF facilities.
    下载: 导出CSV

    表  2  反射式宽能带KB显微成像系统光学参数

    Table  2.   Parameters of the reflective KB microscope

    reflector curvature radius/m magnification grazing incidence angle/(°) mirror length/mm object distance/mm image distance/mm
    horizontal 50 21 0.437 5 12 200 4200
    vertical 50 19.8 0.452 5 12 212 4188
    下载: 导出CSV

    表  3  多层膜单能响应KB显微成像系统光学参数

    Table  3.   Parameters of the multi-layer coated quasi-monenergistic response KB microscope

    reflector curvature radius/m magnification grazing incidence angle/(°) mirror lenght/mm object distance/mm image distance/mm
    P1 19.5 20 1.175 4 10 210 4200
    P2 21.0 19.045 1.140 7 10 220 4190
    P3 19.5 18.174 1.281 2 10 230 41801
    下载: 导出CSV
  • [1] Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800-806. doi: 10.1038/nphys3720
    [2] Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [3] Kline J L, Batha S H, Benedetti L R, et al. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 2019, 59: 112018. doi: 10.1088/1741-4326/ab1ecf
    [4] Clark D S, Weber C R, Milovich J L, et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Physics of Plasmas, 2016, 23: 056302. doi: 10.1063/1.4943527
    [5] Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516: 74-77. doi: 10.1038/nature14005
    [6] Engelhorn K, Hilsabeck T J, Kilkenny J, et al. Sub-nanosecond single line-of-sight (SLOS) X-ray imagers (invited)[J]. Review of Scientific Instruments, 2018, 89: 10G123. doi: 10.1063/1.5039648
    [7] Theobald W, Sorce C, Bedzyk M, et al. The single-line-of-sight, time-resolved X-ray imager diagnostic on OMEGA[J]. Review of Scientific Instruments, 2018, 89: 10G117. doi: 10.1063/1.5036767
    [8] Nagel S R, Hilsabeck T J, Bell P M, et al. Investigating high speed phenomena in laser plasma interactions using dilation X-ray imager[J]. Review of Scientific Instruments, 2014, 85: 11E504. doi: 10.1063/1.4890396
    [9] Hilsabeck T J, Nagel A R, Hares J D, et.al. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation[C]// Proc of SPIE.2017: 1032805.
    [10] Nakagawa K, Iwasaki A, Oishi Y, et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 2014, 8(9): 695-700. doi: 10.1038/nphoton.2014.163
    [11] Pickworth L A, McCarville T, Decker T, et al. A Kirkpatrick-Baez microscope for the National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 11D611. doi: 10.1063/1.4886433
    [12] Pickworth L A, Ayers J, Bell P, et al. The National Ignition Facility modular Kirkpatrick-Baez microscope[J]. Review of Scientific Instruments, 2016, 87: 11E316. doi: 10.1063/1.4960417
    [13] Marshall F J, Bahr R E, Goncharov V N, et al. A framed, 16-image Kirkpatrick–Baez X-ray microscope[J]. Review of Scientific Instruments, 2017, 88: 093702. doi: 10.1063/1.5000737
    [14] Rosch R, Trosseille C, Caillaud T, et al. First set of gated X-ray imaging diagnostics for the Laser Megajoule facility[J]. Review of Scientific Instruments, 2016, 87: 033706. doi: 10.1063/1.4942930
    [15] Zhang X, Chen Z, Li Y, et al. A four-channels reflective Kirkpatrick-Baez microscope for the hot spot diagnostic in the 100 kJ laser driven inertial confinement fusion in China[J]. J Instrum, 2019, 14: C11010. doi: 10.1088/1748-0221/14/11/C11010
    [16] Yaran, L i, Baozhong, et al. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China's laser fusion facility[J]. Applied Optics, 2017, 56: 3311-3318. doi: 10.1364/AO.56.003311
    [17] Xie Q, Mu B, Li Y, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-III facility[J]. Optics Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
    [18] Pikuz T A, Faenov A Y, Skobelev I Y, et al. Highly efficient X-ray imaging and backlighting schemes based on spherically bent crystals[C]// Proc of SPIE. 2004: 5196: 362-374.
    [19] Aglitskiy Y, Lehecka T, Obenschain S, et al. High-resolution monochromatic X-ray imaging system based on spherically bent crystals[J]. Applied Optics, 1998, 37(22): 5253-5261. doi: 10.1364/AO.37.005253
    [20] 陈伯伦, 韦敏习, 杨正华, 等. 球面弯晶的背光成像特性[J]. 强激光与粒子束, 2013, 25(3):641-645. (Chen Bolun, Wei Minxi, Yang Zhenghua, et al. Character of backlight imaging based on spherically bent crystal[J]. High Power Laser and Particle Beams, 2013, 25(3): 641-645 doi: 10.3788/HPLPB20132503.0641
    [21] 陈伯伦, 杨正华, 韦敏习, 等. 神光II激光装置X射线高分辨单色成像技术[J]. 强激光与粒子束, 2013, 25(12):3119-3122. (Chen Bolun, Yang Zhenghua, Wei Minxi, et al. High-resolution monochromatic X-ray imaging techniques applied to Shenguang II laser facility[J]. High Power Laser and Particle Beams, 2013, 25(12): 3119-3122 doi: 10.3788/HPLPB20132512.3119
    [22] 杨正华, 陈伯伦, 韦敏习, 等. 高分辨球面弯晶单色成像系统研制与应用[J]. 强激光与粒子束, 2013, 25(9):2267-2269. (Yang Zhenghua, Chen Bolun, Wei Minxi, et al. , Development and application of high-resolution spherically bent crystal monochromatic imaging system[J]. High Power Laser and Particle Beams, 2013, 25(9): 2267-2269 doi: 10.3788/HPLPB20132509.2267
    [23] Chen Bolun, Yang Zhenghua, Wei Minxi, et al. Implosion dynamics measurements by monochromatic X-ray radiography in inertial confinement fusion[J]. Physics of Plasmas, 2014, 21: 122705. doi: 10.1063/1.4903336
    [24] Bradley D K, Bell P M, Landen O L, et al. Development and characterization of a pair of 30-40 ps X-ray framing cameras[J]. Review of Scientific Instruments, 1995, 66: 1. doi: 10.1063/1.1145258
    [25] Hilsabeck T J, Hares J D, Kilkenny J D, et al. Pulse-dilation enhanced gated optical imager with 5 ps resolution (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E317. doi: 10.1063/1.3479111
    [26] Nagel S R, Hilsabeck T J, Bell P M, et al. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Review of Scientific Instruments, 2012, 83: 10E116. doi: 10.1063/1.4732849
    [27] Engelhorn K, Hilsabeck T J, Kilkenny J D, et al. Single Line-Of-Sight (SLOS) X-ray imagers[C]// High Temperature Plasma Diagnostic Conference. 2018.
    [28] Ress D, Lerche R A, Ellis R J, et al. Neutron imaging of laser fusion targets[J]. Science, 1988, 241(4868): 956-958. doi: 10.1126/science.241.4868.956
    [29] Disdier L, Rouyer A, Wilson D C, et al. High-resolution neutron imaging of laser imploded DT targets[J]. Nuclear Instruments & Methods in Physics Research, 2002, 489: 496-502.
    [30] Christensen C R, Barnes C W, Morgan G L, et al. First results of pinhole neutron imaging for inertial confinement fusion[J]. Review of Scientific Instruments, 2003, 74(5): 2690-2694. doi: 10.1063/1.1569407
    [31] Disdier L, Rouyer A, Lantuejoul I, et al. Inertial confinement fusion neutron images[J]. Physics of Plasmas, 2006, 13: 056317. doi: 10.1063/1.2174828
    [32] Grim G P, Bradley P A, Day R D, et al. Neutron imaging development for megajoule scale inertial confinement fusion experiments[C]//Journal of Physics Conference Series. 2008, 112: 032078.
    [33] Caillaud T, Landoas O, Briat M, et al. Development of the large neutron imaging system for inertial confinement fusion experiments[J]. Review of Scientific Instruments, 2012, 83: 033502. doi: 10.1063/1.3689768
    [34] Merrill F E, Bower D, Buckles R, et al. The neutron imaging diagnostic at NIF[J]. Review of Scientific Instruments, 2012, 83: 10D317. doi: 10.1063/1.4739242
    [35] Volegov P L, Danley C R, Fittinghoff D N, et al. Neutron source reconstruction from pinhole imaging at National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 023508. doi: 10.1063/1.4865456
    [36] Volegov P L, Danley C R, Fittinghoff D N, et al. Self characterization of a coded aperture array for neutron source imaging[J]. Review of Scientific Instruments, 2014, 85: 123506. doi: 10.1063/1.4902978
    [37] Fatherley V E, Barker D A, Fittinghoff D N, et al. Design of the aperture array for neutron imaging from the north pole of the National Ignition Facility[C]// Proc of SPIE. 2016: 99660B.
    [38] Fatherley V E, Fittinghoff D N, Hibbard R L, et al. Aperture design for the third neutron and first gamma-ray imaging systems for the National Ignition Facility[J]. Review of Scientific Instruments, 2018, 89: 10I127. doi: 10.1063/1.5039328
    [39] Lerche R A, Ress D, Ellis R J, et al. Neutron penumbral imaging of laser-fusion targets[J]. Laser & Particle Beams, 1991, 9(1): 99-118.
    [40] 赵宗清, 丁永坤, 刘东剑, 等. 中子半影成像的数值模拟[J]. 强激光与粒子束, 2006, 18(7):1203-1207. (Zhao Zongqing, Ding Yongkun, Liu Dongjian, et al. Numerical simulation of neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2006, 18(7): 1203-1207
    [41] 郝轶聃, 缪文勇, 赵宗清, 等. 中子半影成像中椭圆度误差的解析计算[J]. 强激光与粒子束, 2007, 19(3):507-510. (Hao Yidan, Miao Wenyong, Zhao Zongqing, et al. Analytic calculation of ellipticity error effect in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2007, 19(3): 507-510
    [42] 余波, 苏明, 黄天晅, 等. 基于100kJ激光装置的中子半影锥成像系统设计[J]. 强激光与粒子束, 2013, 25(10):2604-2610. (Yu Bo, Su Ming, Huang Tianxuan, et al. Designing of diagnostic system for neutron penumbral imaging based on Shenguang-Ⅲ facility[J]. High Power Laser and Particle Beams, 2013, 25(10): 2604-2610 doi: 10.3788/HPLPB20132510.2604
    [43] Chen Z, Zhang X, Wang F, et al. Design of neutron imaging aperture for inertial confinement fusion in laser fusion research center[J]. Journal of Instrumentation, 2019, 14: C11007. doi: 10.1088/1748-0221/14/11/C11007
    [44] Ng R. Digital light field photography[M]. Palo Atto: Stanford University, 2006.
    [45] 陈佃文. 基于4D光场数据的深度信息获取[D]. 北京: 北京信息科技大学, 2016.

    Chen Dianwen. Depth information acquisition based on 4D light field data[D]. Beijing: Beijing Information Science & Technology University, 2016.
    [46] Mousnier A, Vural E, Guillemot C, et al. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, arxiv: 1503.01P03, 2015: 1-10.
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  2033
  • HTML全文浏览量:  577
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-07-10
  • 刊出日期:  2020-09-13

目录

    /

    返回文章
    返回