留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CF2燃料组件主要堆内辐照性能

李云 李华 张林 蒲曾坪 焦拥军 张坤 黄春兰

李云, 李华, 张林, 等. CF2燃料组件主要堆内辐照性能[J]. 强激光与粒子束, 2020, 32: 106002. doi: 10.11884/HPLPB202032.200159
引用本文: 李云, 李华, 张林, 等. CF2燃料组件主要堆内辐照性能[J]. 强激光与粒子束, 2020, 32: 106002. doi: 10.11884/HPLPB202032.200159
Li Yun, Li Hua, Zhang Lin, et al. Major in-pile performance of CF2 fuel assembly[J]. High Power Laser and Particle Beams, 2020, 32: 106002. doi: 10.11884/HPLPB202032.200159
Citation: Li Yun, Li Hua, Zhang Lin, et al. Major in-pile performance of CF2 fuel assembly[J]. High Power Laser and Particle Beams, 2020, 32: 106002. doi: 10.11884/HPLPB202032.200159

CF2燃料组件主要堆内辐照性能

doi: 10.11884/HPLPB202032.200159
详细信息
    作者简介:

    李 云(1981—),男,学士,从事核燃料组件研究;liyun658@126.com

  • 中图分类号: TL329

Major in-pile performance of CF2 fuel assembly

  • 摘要: 结合辐照考验方案,评价了CF2先导燃料组件的机械性能及燃料棒的热力性能,结果表明各项性能均满足准则要求。结合辐照后池边检查结果,对CF2燃料组件的主要堆内辐照性能进行了研究,包括燃料组件及燃料棒生长和弯曲、定位格架生长等各项燃耗相关性能。结果表明,在燃耗达到44500 MWd/tU的情况下CF2燃料组件主要辐照性能均达到了预期水平,满足反应堆的使用要求。CF2燃料组件后续可批量应用于华龙一号。
  • 图  1  CF2燃料组件典型表观

    Figure  1.  Typical appearance of CF2 fuel assembly

    图  2  CF2燃料组件辐照生长率

    Figure  2.  Growth rate of CF2 fuel assembly

    图  3  燃料棒生长率

    Figure  3.  Growth rate of fuel rod

    图  4  CF2燃料组件弯曲度

    Figure  4.  Bowing of CF2 fuel assembly

    图  5  CF2燃料组件扭转度

    Figure  5.  Twist of CF2 fuel assembly

    图  6  CF2燃料组件流道闭合率

    Figure  6.  Fractional channel closure of CF2 fuel assembly

    图  7  定位格架横向生长率

    Figure  7.  Growth rate of spacer grid

    表  1  堆芯运行参数

    Table  1.   Core operation parameters

    average linear power density/(W/cm)core pressure/MPacoolant average temperature/℃coolant average flow velocity/(m/s)
    160.915.53104.34
    下载: 导出CSV

    表  2  CF2先导燃料组件辐照历史

    Table  2.   Irradiation history of CF2 lead fuel assembly

    cyclecycle length/dcycle burnup/(MWd/tU)fuel assembly burnup/(MWd/tU)
    10th cycle335112008400
    11th cycle4861670027200
    12th cycle4861660044500
    下载: 导出CSV

    表  3  CF2燃料组件主要性能评价结果

    Table  3.   Main evaluation results for CF2 fuel assembly

    gap between
    FA and core
    cavity/mm
    gap between fuel
    rod and top
    nozzle/mm
    gap between
    neighboring fuel
    assemblies/
    mm
    axial hold down
    force/N
    fretting of
    fuel rod
    cladding/μm
    fuel
    temperature/℃
    cladding temperature
    in steady
    state/℃
    cladding temperature
    in transient
    state/℃
    cladding
    strain/%
    value1.259.380.499425.519593703890.91
    criterion>0>0>0>0≤57<2590<400<425<1%
    下载: 导出CSV
  • [1] 李云. 华龙一号核电机组燃料组件研发[J]. 核动力工程, 2019, 40(S1):19-22. (Li Yun. Development of HPR1000 fuel assembly[J]. Nuclear Power Engineering, 2019, 40(S1): 19-22
    [2] 焦拥军. “华龙一号”燃料组件设计研究及验证[J]. 中国核电, 2017, 10(4):478-482. (Jiao Yongjun. R&D and validation of HPR1000 fuel assembly[J]. China Nuclear Power, 2017, 10(4): 478-482
    [3] 廖鸿宽. 国产自主化燃料组件入堆辐照燃料管理策略研究[J]. 核动力工程, 2016, 37(2):19-22. (Liao Hongkuan. Study of management strategy for in-core irradiated fuel assembly by self-reliance[J]. Nuclear Power Engineering, 2016, 37(2): 19-22
    [4] 茹俊. 压水堆燃料组件辐照考验技术研究[J]. 核动力工程, 2017, 38(z1):175-177. (Ru Jun. Technical research on PWR fuel assembly in-pile test[J]. Nuclear Power Engineering, 2017, 38(z1): 175-177
    [5] IAEA. Review of fuel failures in water cooled reactors[R].NF-T-2.1, 2010.
    [6] 茹俊. 压水堆燃料组件安全运行保障措施分析[J]. 核动力工程, 2017, 38(6):175-179. (Ru Jun. Analysis of measures for safe operation of PWR fuel assemblies[J]. Nuclear Power Engineering, 2017, 38(6): 175-179
    [7] 任亮. 压水堆燃料组件池边检查技术研究进展[J]. 科技导报, 2015, 33(18):91-95. (Ren Liang. Pool side inspection technology for PWR fuel assembly[J]. Science and Technology Review, 2015, 33(18): 91-95
    [8] 肖忠. AFA3G燃料组件和燃料棒的辐照生长[J]. 核动力工程, 2002, 23(1):60-62. (Xiao Zhong. Irradiation growth of AFA3G fuel assembly and fuel rod[J]. Nuclear Power Engineering, 2002, 23(1): 60-62
    [9] 李伟才. 压水堆燃料组件弯曲变形机理及规避措施[J]. 核动力工程, 2008, 29(2):55-57. (Li Weicai. Mechanism of fuel assembly bowing in PWR and preventive measures[J]. Nuclear Power Engineering, 2008, 29(2): 55-57
    [10] Kyu-Tae K I M. In-reactor performance of an advanced PWR fuel PLUS7 for OPR1000s in Korea[J]. Journal of Nuclear Science and Technology, 2008, 45(8): 836-849. doi: 10.1080/18811248.2008.9711485
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1561
  • HTML全文浏览量:  329
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-03
  • 修回日期:  2020-06-16
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回