Design of pulsed power supply using single switch resonant circuit
-
摘要: 谐振电路可以实现软开关,减小开关损耗,而广泛应用于电力电子领域。谐振电路工作在特定模式下可以产生脉冲形式电压,相较于其他脉冲发生器拓扑具有开关数量少、低开关损耗和低电磁干扰(EMI)的优点。谐振电路通常需要半桥或全桥转换器产生一个方波激励,本文提出了一种结合脉冲变压器和单开关谐振电路的脉冲电路,主电路只需使用一个半导体开关,便可通过谐振电路和脉冲变压器在副边得到高压脉冲,且可以实现零电流关断(ZCS)。对电路的工作过程进行了理论分析,并搭建了样机进行了带载实验。试验结果表明,在介质阻挡放电(DBD)负载上实现了频率为10~20 kHz、幅值为5~10 kV的正弦脉冲电压。该电路结构简单,成本低,安全可靠。Abstract: The resonant circuit can realize soft switching and reduce switching loss, and is widely used in the field of power electronics. The resonant circuit can generate pulse-shaped voltage in a specific mode. Compared with other pulse generator topologies, it has the advantages of fewer switches, lower switching loss and lower electromagnetic interference (EMI). The resonant circuit usually requires a half-bridge or full-bridge converter to generate a square wave excitation. This paper proposes a pulse circuit that combines a pulse transformer and a single-switch resonant circuit. The main circuit only needs to use a semiconductor switch to produce high voltage pulses via the resonant circuit and the pulse trausformer on the secondary side with zero current switching (ZCS). This paper theoretically analyzes the working process of the circuit, and sets up prototype to carry out the load experiment. The test results show that a sinusoidal pulse voltage with a frequency of 10−20 kHz and an amplitude of 5−10 kV is realized on a dielectric barrier discharge (DBD) load. The pulse circuit has simple structure, stable operation and low cost.
-
表 1 不同频率下的
$ K $ 和${V}_{\rm{C}_{r},pk}$ 的理论值与实验值对比Table 1. Comparison of theoretical and experimental values of
$ K $ and${V}_{\rm{C}_{r},pk}$ at different frequencies${f_{\rm{s}}}$/kHz ${u_{ {C_{\rm{r}}},0} }/V$ a K ${V_{ {C_{\rm{r}}},{\rm{pk}}} }/V$ exp. theo. exp. theo difference 5 6.16 0.30 1.60 1.64 32.0 32.8 2.5% 10 −6.40 −0.32 2.13 2.20 42.6 44.0 3.2% 15 −14.4 −0.72 2.49 2.60 49.4 52.0 4.2% 20 −26.4 −1.32 2.99 3.08 60.0 61.6 2.6% -
[1] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017(20):7-15. (Dai Dong, Ning Wenjun, Shao Tao. Research status and development trend of atmospheric pressure low temperature plasma[J]. Transactions of China Electrotechnical Society, 2017(20): 7-15 [2] Laroussi M. Low-temperature plasma jet for biomedical applications: A review[J]. IEEE Trans Plasma Science, 2015, 43(3): 703-712. doi: 10.1109/TPS.2015.2403307 [3] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6):1416-1425. (Lu Xinpei. Plasma jet and its medical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425 [4] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF<sub>6</sub>废气综述[J]. 电工技术学报, 2016, 31(24):17-24. (Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue. Review of SF<sub>6</sub> exhaust gas treatment by low temperature plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 17-24 [5] 李文耀, 王瑞雪, 章程, 等. 大气压弥散放电辅助Cu表面类SiO<sub>2</sub>薄膜沉积[J]. 中国电机工程学报, 2016, 36(24):6736-6742. (Li Wenyao, Wang Ruixue, Zhang Cheng, et al. Atmospheric diffusion discharge assisted Cu surface SiO<sub>2</sub> film deposition[J]. Proceedings of the CSEE, 2016, 36(24): 6736-6742 [6] Bonnin X, Brandelero J, Videau N, et al. A high voltage high frequency resonant inverter for supplying DBD devices with short discharge current pulses[J]. IEEE Trans Power Electronics, 2014, 29(8): 4261-4269. doi: 10.1109/TPEL.2013.2295525 [7] Jiang H, Shao T, Zhang C, et al. Comparison of AC and nanosecond-pulsed DBDs in atmospheric air[J]. IEEE Trans Plasma Science, 2011, 39(11): 2076-2077. doi: 10.1109/TPS.2011.2146280 [8] Hao S, Li W, Gu X, et al. Improved surface modification of polymer films by energy-compressed dielectric barrier discharge with discharge-time-regulated power source[J]. IEEE Trans Plasma Science, 2017, 45(1): 60-67. doi: 10.1109/TPS.2016.2631902 [9] 东冲. 线型脉冲调制器理论基础与专用电路[M]. 北京: 国防工业出版社, 1978.Dong Chong. Theoretical basis and special circuit of linear pulse modulator[M]. Beijing: National Defense Industry Press, 1978 [10] Zhou Y, Zhou Z, Yao C, et al. Fast-rise-time trigger source based on solid-state switch and pulse transformer for triggered vacuum switch[J]. IEEE Trans Dielectrics & Electrical Insulation, 2017, 24(4): 2105-2114. [11] Kim J H, Ryu M H, Min B D, et al. High voltage pulse power implementation using IGBT stacks[C]//IEEE Annual Power Electronics Specialists Conference. 2006. [12] Jiang W, Tokuchi A. Repetitive linear transformer driver using power MOSFET[J]. IEEE Trans Plasma Science, 2012, 40(10): 2625-2628. doi: 10.1109/TPS.2012.2200048 [13] Redondo L M, Silva J F. Flyback versus forward switching power supply topologies for unipolar pulsed-power applications[J]. IEEE Trans Plasma Science, 2009, 37(1): 171-178. doi: 10.1109/TPS.2008.2006056 [14] Florez D, Diez R, Piquet H. DCM-operated series-resonant inverter for the supply of DBD excimer lamps[J]. IEEE Trans Industry Applications, 2014, 50(1): 86-93. doi: 10.1109/TIA.2013.2271216 [15] Meisser M, Kling R, Heering W. Universal resonant topology for high frequency pulsed operation of dielectric barrier discharge light sources[C]//Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition. 2011: 1180-1187. [16] Rueda V, Diop A, Diez R, et al. Series resonant inverter efficiency improvement with valley switching for dielectric barrier discharges[C]// IEEE 13th International Conference on Power Electronics and Drive Systems. 2019. [17] Meisser M, Kling R, HeeringW, et al. Universal resonant topology for high frequency pulsed operation of dielectric barrier discharge light source[C]//2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). 2011:1180-1187.