留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤激光模式不稳定研究十年回顾与展望

王建军 刘玙 李敏 冯曦 楚秋慧 张春 高聪 陶汝茂 林宏奂 景峰

王建军, 刘玙, 李敏, 等. 光纤激光模式不稳定研究十年回顾与展望[J]. 强激光与粒子束, 2020, 32: 121003. doi: 10.11884/HPLPB202032.200180
引用本文: 王建军, 刘玙, 李敏, 等. 光纤激光模式不稳定研究十年回顾与展望[J]. 强激光与粒子束, 2020, 32: 121003. doi: 10.11884/HPLPB202032.200180
Wang Jianjun, Liu Yu, Li Min, et al. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121003. doi: 10.11884/HPLPB202032.200180
Citation: Wang Jianjun, Liu Yu, Li Min, et al. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121003. doi: 10.11884/HPLPB202032.200180

光纤激光模式不稳定研究十年回顾与展望

doi: 10.11884/HPLPB202032.200180
基金项目: 国家自然科学基金项目(61905226)
详细信息
    作者简介:

    王建军(1974—),男,研究员,主要从事高功率光纤激光技术研究;wjjcaep@caep.cn

    通讯作者:

    陶汝茂(1987—),男,副研究员,主要从事高功率光纤激光技术研究;taorumao@sohu.com

  • 中图分类号: TN248

Ten-year review and prospect on mode instability research of fiber lasers

  • 摘要: 2010年模式不稳定现象首次报道,开启了光纤激光与废热的斗争史。回顾了10年来模式不稳定现象的研究进展,概述了光纤激光模式不稳定物理表征、基本原理、理论研究、影响因素和抑制策略等,介绍了高功率光纤激光在模式不稳定抑制方面取得的最新成果,展望了高功率光纤激光模式不稳定研究的未来发展,对光纤激光模式不稳定未来可能的研究方向进行了展望。
  • [1] Snitzer E. Proposed fiber cavities for optical masers[J]. J Appl Phys, 1961, 32: 36-39. doi: 10.1063/1.1735955
    [2] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): 63-92. doi: 10.1364/JOSAB.27.000B63
    [3] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7: 258-261. doi: 10.1038/nphoton.2013.75
    [4] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nat Photonics, 2013, 7: 861-867. doi: 10.1038/nphoton.2013.273
    [5] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE J Sel Top Quantum Electron, 2014, 20(11): 219-241.
    [6] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J]. Appl Opt, 2014, 53: 6554-6568. doi: 10.1364/AO.53.006554
    [7] 杨昌盛, 徐善辉, 周军, 等. 大功率光纤激光材料与器件关键技术研究进展[J]. 中国科学: 技术科学, 2017, 47:1038-1048. (Yang Changsheng, Xu Shanhui, Zhou Jun, et al. Research advance on the key technology of high-power fiber laser materials and components[J]. Scientia Sinica Technologica, 2017, 47: 1038-1048 doi: 10.1360/N092016-00437
    [8] Liu Z J, Jin X X, Su R T, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China: Information Science, 2019, 62: 041301. doi: 10.1007/s11432-018-9742-0
    [9] Stiles E. New developments in IPG fiber laser technology[C]//Proc 5th Int Workshop Fiber Lasers. 2009.
    [10] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Opt Lett, 2010, 35: 94-96. doi: 10.1364/OL.35.000094
    [11] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Proc Conf Lasers Electro-Opt. 2013: AF2J.1.
    [12] 林宏奂, 唐选, 李成钰, 等. 全国产单纤激光系统获得10.6 kW激光输出[J]. 中国激光, 2018, 45:0315001. (Lin Honghuan, Tang Xuan, Li Chengyu, et al. 10.6 kW laser from totally-domestic fiber laser systems[J]. Chinese Journal of Laser, 2018, 45: 0315001 doi: 10.3788/CJL201845.0315001
    [13] 林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出[J]. 强激光与粒子束, 2018, 30:060101. (Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 2018, 30: 060101 doi: 10.11884/HPLPB201830.180110
    [14] 高聪, 代江云, 李峰云, 等. 自研万瓦级同带泵浦掺镱石英玻璃光纤[J]. 中国激光, 2020, 47:0315001. (Gao Cong, Dai Jiangyun, Li Fengyun, et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Laser, 2020, 47: 0315001 doi: 10.3788/CJL202047.0315001
    [15] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001. (Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10-kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
    [16] Fang Q, Li J, Shi W, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics J, 2017, 9: 1506107.
    [17] Möller F, Krämer R, Matzdorf C, et al. Multi-kW performance analysis of Yb-doped monolithic single-mode amplifier and oscillator setup[C]//Proc of SPIE. 2019: 108970D.
    [18] Ye Y, Xi X, Shi C, et al. Experimental study of 5 kW high stability monolithic fiber laser oscillator with or without external feedback[J]. IEEE Photonics J, 2019, 11: 1503508.
    [19] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Opt Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
    [20] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode-instabilities in high power fiber lasers and amplifiers[J]. Opt Express, 2012, 20: 15710-15722. doi: 10.1364/OE.20.015710
    [21] Stutzki F, Otto H, Jansen F, et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Opt Lett, 2011, 36: 4572-4574. doi: 10.1364/OL.36.004572
    [22] Tao R M, Ma P F, Wang X L, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]//International Photonics and OptoElectronics Meetings. 2014.
    [23] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51:020001. (Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51: 020001
    [24] 史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44:0201004. (Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201004 doi: 10.3788/CJL201744.0201004
    [25] 陶汝茂, 周朴, 王小林, 等. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究[J]. 物理学报, 2014, 63:085202. (Tao Rumao, Zhou Pu, Wang Xiaolin, et al. Experimental study on mode instability in high power all-fiber master oscillator power amplifier fiber lasers[J]. Acta Physica Sinica, 2014, 63: 085202
    [26] Tao R, Ma P, Wang X, et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]//The 20th International Symposium on High-Power Laser Systems and Applications. 2014.
    [27] Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17: 045504.
    [28] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36: 3118-3120. doi: 10.1364/OL.36.003118
    [29] Jansen F, Stutzki F, Otto H, et al. High-power thermally guiding index-antiguiding-core fibers[J]. Opt Lett, 2013, 38: 510-512. doi: 10.1364/OL.38.000510
    [30] Yang B L, Zhang H W, Shi C, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 2018, 20: 025802.
    [31] Malleville M, Benoît A, Dauliat R, et al. Experimental investigation of the transverse modal instabilities onset in high power fully-aperiodic-large-pitch fiber lasers[C]//Proc of SPIE. 2018: 1051206.
    [32] Scarnera V, Ghiringhelli F, Malinowski A, et al. Modal instabilities in high power fiber laser oscillators[J]. Opt Express, 2019, 27: 4386-4403. doi: 10.1364/OE.27.004386
    [33] Roohforouz A, Chenar R, Azizi S, et al. Effect of pumping configuration on the transverse mode instability power threshold in a 3.02 kW fiber laser oscillator[C]//OSA Laser Congress. 2019.
    [34] Chen H, Cao J, Huang Z, et al. Experimental investigations on TMI and IM-FWM in distributed side-pumped fiber amplifier[J]. IEEE Photonics J, 2020, 12: 1502413.
    [35] Jauregui C, Eidam T, Limpert J, et al. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Opt Express, 2011, 19: 3258-3271. doi: 10.1364/OE.19.003258
    [36] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Opt Express, 2011, 19(11): 10180-10192. doi: 10.1364/OE.19.010180
    [37] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Opt Lett, 2012, 37(12): 2382-2384. doi: 10.1364/OL.37.002382
    [38] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Opt Express, 2012, 20(12): 12912-12925. doi: 10.1364/OE.20.012912
    [39] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Opt Express, 2012, 20(10): 11407-11422. doi: 10.1364/OE.20.011407
    [40] Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Opt Express, 2013, 21(3): 2642-2656. doi: 10.1364/OE.21.002642
    [41] Hu I N, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally-induced modal instabilities in high power fiber amplifiers[C]//Proc of SPIE. 2013: 860109.
    [42] Jauregui C, Eidam T, Otto H J, et al. Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems[J]. Opt Express, 2012, 21(1): 440-451.
    [43] Chi M, Huignard J P, Petersen P M. A general theory of two-wave mixing in nonlinear media[J]. J Opt Soc Am B, 2009, 26(8): 1578-1584. doi: 10.1364/JOSAB.26.001578
    [44] Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Opt Express, 2012, 20(22): 24545-24558. doi: 10.1364/OE.20.024545
    [45] Smith A V, Smith J J. Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers[J]. IEEE Photonics J, 2013, 5: 7100807. doi: 10.1109/JPHOT.2013.2280526
    [46] Smith A V, Smith J J. Review of models of mode instability in fiber amplifiers[EB/OL]. http://as-photonics.com.
    [47] Ward B. Numerical analysis of modal instability onset in fiber amplifiers[C]//Proc of SPIE. 2014: 89611U.
    [48] Naderi S, Dajani I, Grosek J, et al. Theoretical treatment of modal instability in high power cladding-pumped Raman amplifiers[C]//Proc of SPIE. 2015: 93442X.
    [49] Ward B. Finite element steady periodic beam propagation analysis of mode instability in high power fiber amplifiers[J]. Opt Express, 2018, 26: 16875-16883. doi: 10.1364/OE.26.016875
    [50] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Opt Express, 2013, 21(3): 2606-2623. doi: 10.1364/OE.21.002606
    [51] Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Opt Express, 2013, 21(13): 16111-16129. doi: 10.1364/OE.21.016111
    [52] Eznaveh Z S, Lopez-Galmiche G, Antonio-Lopez E, et al. Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers[C]//Proc of SPIE. 2015: 93442G.
    [53] Xia N, Yoo S. Mode instability in ytterbium-doped non-circular fibers[J]. Opt Express, 2017, 25: 13230-13251. doi: 10.1364/OE.25.013230
    [54] Wang Y, Liu Q, Ma Y, et al. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 2017: 1600398.
    [55] Zhu S, Li J, Li L, et al. Mode instabilities in Yb: YAG crystalline fiber amplifiers[J]. Opt Express, 2019, 27: 35065-35078. doi: 10.1364/OE.27.035065
    [56] Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Opt Express, 2013, 21(2): 1944-1971. doi: 10.1364/OE.21.001944
    [57] Hansen K R, Lægsgaard J. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers[J]. Opt Express, 2014, 22(9): 11267-11278. doi: 10.1364/OE.22.011267
    [58] Mermelstein M. Laser linewidth dependence to the transverse mode instability (TMI) nonlinear gain in kW-class fiber amplifiers[C]//Proc of SPIE. 2018: 1051221.
    [59] Jauregui C, Otto H-J, Stutzki F, et al. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening[J]. Opt Express, 2015, 23: 20203-20218. doi: 10.1364/OE.23.020203
    [60] Tao R, Ma P, Wang X, Zhou P, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3: 86-93. doi: 10.1364/PRJ.3.000086
    [61] Kong L, Leng J, Zhou P, et al. Numerical modeling of the thermally induced core laser leakage in high power co-pumped ytterbium doped fiber amplifier[J]. High Power Laser Science and Engineering, 2018, 6: e25. doi: 10.1017/hpl.2018.15
    [62] Li Z, Huang Z, Xiang X, et al. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 2017, 5: 77-81. doi: 10.1364/PRJ.5.000077
    [63] Zervas M. Transverse mode instability analysis in fibre amplifiers[C]//Proc of SPIE. 2017: 100830M.
    [64] Gao W, Zhao B, Fan W, et al. Instability transverse mode phase transition of fiber oscillator for extreme power lasers[J]. Opt Express, 2019, 27: 22393-22407. doi: 10.1364/OE.27.022393
    [65] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]//Proc of SPIE. 2013: 860108.
    [66] Laurila M, Jørgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability[J]. Opt Express, 2012, 20(5): 5742-5753. doi: 10.1364/OE.20.005742
    [67] Tao R, Ma P, Wang X, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE J Quantum Electron, 2015, 51: 1600106.
    [68] Filippov V, Ustimchik V, Chamorovskiy Y, et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]//Cleo/europe-eqec P Cj-105 1 P Cj. 2015.
    [69] Stihler C, Otto H-J, Jauregui C, et al. Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier[C]//Proc of SPIE. 2017: 100830R.
    [70] Bobkov K, Bubnov M, Aleshkina S, et al. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifers[J]. Laser Phys Lett, 2017, 14: 015102.
    [71] Lupi J, Johansen M, Michieletto M, et al. Static and dynamic mode coupling in double-pass rod-type fiber amplifier[J]. Opt Lett, 2018, 43(22): 5535-5538. doi: 10.1364/OL.43.005535
    [72] Chen Y, Xu H, Xing Y, et al. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier[J]. Opt Express, 2018, 26: 20430-20441. doi: 10.1364/OE.26.020430
    [73] Gaida C, Gebhardt C, Heuermann T, et al. Observation of transverse-mode instabilities in a thulium-doped fiber amplifier[C]//Proc of SPIE. 2019: 1089702.
    [74] Distler V, Möller F, Strecker M, et al. High power narrow-linewidth Raman amplifier and its limitation[C]//Proc of SPIE. 2020: 1126005.
    [75] Zhang H, Xiao H, Wang X, et al. Mode dynamics in high power Yb-Raman fiber amplifier[J]. Opt Lett, 2020, 45(13): 3394-3397. doi: 10.1364/OL.393879
    [76] Lægsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Opt Express, 2016, 24: 13429-13443. doi: 10.1364/OE.24.013429
    [77] Ward B. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers[J]. Opt Express, 2016, 24: 3488-3501. doi: 10.1364/OE.24.003488
    [78] Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Opt. Express, 2016, 24: 975-992. doi: 10.1364/OE.24.000975
    [79] Shi C, Wang X, Zhang H, et al. Simulation investigation of impact factors in photodarkening-induced beam degradation in fiber amplifers[J]. Laser Phys, 2017, 27: 105102. doi: 10.1088/1555-6611/aa77be
    [80] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE J Sel Top Quant Electron, 2018, 24: 0903319.
    [81] Tao R, Ma P, Wang X, et al. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers[J]. Laser Phys, 2016, 26: 065103. doi: 10.1088/1054-660X/26/6/065103
    [82] Ward B. Accurate modeling of rod-type photonic crystal fiber amplifiers[C]//Proc of SPIE. 2015: 97280F.
    [83] Xia N. Investigation of transverse mode instability suppression in large mode area fibre[D]. Singapore: Nanyang Technological University Library. 2019.
    [84] Tao R, Wang X, Zhou P, et al. Seed power dependence of mode instabilities in high-power fiber amplifiers[J]. Journal of Optics, 2017, 19: 065202. doi: 10.1088/2040-8986/aa6902
    [85] Karow M, Tünnermann H, Neumann J, et al. Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power[J]. Opt Lett, 2012, 37: 4242-4244. doi: 10.1364/OL.37.004242
    [86] Chu Q, Tao R, Li Chen, et al. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier[J]. Scientific Reports, 2019, 9: 9396. doi: 10.1038/s41598-019-45787-8
    [87] Zhang F, Xu H, Xing Y, et al. Bending diameter dependence of mode instabilities in multimode fiber amplifier[J]. Laser Phys Lett, 2019, 16: 035104. doi: 10.1088/1612-202X/aaff4b
    [88] Tao R, Ma P, Wang X, et al. A novel theoretical model for mode instability in high power fiber lasers[C]//Advanced Solid State Lasers. 2014: AM5A20.
    [89] 陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科学技术大学, 2015.

    Tao Rumao. Study of thermal-induced modal instabilities in high power narrow-linewidth fiber amplifiers with near diffraction-limited beam quality[D]. Changsha: Graduate School of National University of Defense Technology, 2015
    [90] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]//Proc of SPIE. 2020, 11260: 1126018.
    [91] Tao R, Liu Y, Xie L, et al. Static and dynamic mode evolution behavior in high power distributed side-coupled cladding-pumped fiber amplifiers[J]. submitted.
    [92] Tao R, Ma P, Wang X, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2015, 12: 085101. doi: 10.1088/1612-2011/12/8/085101
    [93] Yu C, Shatrovoy O, Fan T, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Opt Lett, 2016, 41: 5202-5205. doi: 10.1364/OL.41.005202
    [94] Tao R, Ma P, Wang X, et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 2016, 18: 065501. doi: 10.1088/2040-8978/18/6/065501
    [95] Goodno G D, McNaught S, Thielen P, et al. Polarization control with mode stability: US8922877B1[P]. 2014-XX-XX.
    [96] Lei M, Qi Y, Liu C, et al. Mode controlling study on narrow-linewidth and high power all-fiber amplifier[C]//Proc of SPIE. 2015, 9543: 95431L.
    [97] Nicholson J, Fini J, Yablon A, et al. Demonstration of bend-induced nonlinearities in large-mode-area fibers[J]. Opt Lett, 2007, 32: 2562-2564. doi: 10.1364/OL.32.002562
    [98] Li M J, Chen X, Liu A, et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. IEEE J Lightwave Tech, 2009, 27: 3010-3016. doi: 10.1109/JLT.2009.2020682
    [99] Walorny M, Abramczyk J, Jacobson N, et al. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions[C]//Proc of SPIE. 2016: 97283A.
    [100] Beier F, Möller F, Sattler B, et al. Experimental investigations on the TMI thresholds of low-NA Yb-doped single mode fibers[J]. Opt Lett, 2018, 43: 1291-1294. doi: 10.1364/OL.43.001291
    [101] Hansen K, Alkeskjold T, Broeng J, et al. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers[J]. Opt Express, 2011, 19: 23965-23980. doi: 10.1364/OE.19.023965
    [102] Rosales-Garcia A, Tobioka H, Abedin K, et al. 2.1 kW single mode continuous wave monolithic fiber laser[C]//Proc of SPIE. 2015: 93441G.
    [103] Kanskar M, Zhang J, Koponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy application[C]//Proc of SPIE. 2018: 105120F.
    [104] Tao R, Ma P, Wang X, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2017, 14: 025002. doi: 10.1088/1612-202X/aa4f8e
    [105] HansJürgen Otto, Jauregui C, Stutzki F, et al. Dependence of mode instabilities on the extracted power of fiber laser systems[C]//Advanced Solid State Lasers. 2013.
    [106] Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Appl Opt, 2015, 54: 8166-8169. doi: 10.1364/AO.54.008166
    [107] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]//Proc of SPIE. 2015: 972807.
    [108] Platonov N, Shkurikhin O, Fomin V, et al. Highly efficient kW level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[C]//Proc of SPIE. 2020: 1126003.
    [109] Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Opt Express, 2013, 21: 21847-21856. doi: 10.1364/OE.21.021847
    [110] Otto H-J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Opt Expres, 2015, 23: 15265-15277. doi: 10.1364/OE.23.015265
    [111] Chen Y, Xu H, Xing Y, et al. Mitigation of mode instability in laser oscillators based on deuterium loading[J]. Opt Express, 2019, 27: 25964-25973. doi: 10.1364/OE.27.025964
    [112] Ballato J, Dragic P. Materials development for next generation optical fiber[J]. Materials, 2014, 7: 4411-4430. doi: 10.3390/ma7064411
    [113] 陈瑰, 侯超奇, 郭海涛, 等. 用于高功率系统的掺镱石英光纤研究进展及发展趋势[J]. 光子学报, 2019, 48:1148012. (Chen Gui, Hou Chaoqi, Guo Haitao, et al. Ytterbium-doped silica fiber for high power system: a review of research progress and development trend[J]. Acta Photonica Sinica, 2019, 48: 1148012 doi: 10.3788/gzxb20194811.1148012
    [114] 杨保来, 王小林, 叶云, 等. 全光纤激光振荡器输出功率突破6 kW[J]. 中国激光, 2020, 47:0116001. (Yang Baolai, Wang Xiaolin, Ye Yun, et al. Laser power from all-fiber oscillators breaks through 6 kW[J]. Chinese Journal of Lasers, 2020, 47: 0116001 doi: 10.3788/CJL202047.0116001
    [115] Möller F, Krämer R, Matzdorf C, et al. Multi-kW performance analysis of Yb-doped monolithic single-mode amplifier and oscillator setup[C]//Proc of SPIE. 2019: 108970D.
    [116] Wang Y, Kitahara R, Kiyoyama W, et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[C]//Proc of SPIE. 2020: 1126022.
    [117] Möller F, Distler V, Schreiber T, et al. Manipulating the heat load distribution by laser gain competition in TMI-limited fiber amplifiers[C]//Proc of SPIE. 2020: 1126019.
    [118] Gaida C, Gebhardt M, Heuermann T, et al. Observation of transverse-mode instabilities in a thulium-doped fiber amplifier[C]//Proc of SPIE. 2019: 1089702.
    [119] Distler V, Möller F, Strecker M, et al. High power narrow-linewidth Raman amplifier and its limitation[C]//Proc of SPIE. 2020: 1126005.
    [120] 于海龙, 王小林, 张汉伟, 等. 300 W线偏振飞秒全光纤啁啾脉冲放大系统[J]. 强激光与粒子束, 2016, 28:050101. (Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. 300 W linearly polarized femtosecond all-fiber chirped pulse amplification system[J]. High Power Laser and Particle Beams, 2016, 28: 050101 doi: doi:10.11884/HPLPB201628.050101
    [121] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]//Proc of SPIE. 2020: 1126018.
    [122] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. IEEE J Sel Topics Quantum Electron, 2014, 20(5): 472-483. doi: 10.1109/JSTQE.2013.2296372
  • 加载中
图(2)
计量
  • 文章访问数:  1635
  • HTML全文浏览量:  472
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-11-06
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回