留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锥面衍射实现高效率双光栅光谱合成

吴娟 李建民 尹新启 曾理江 邱克强 李朝明 颜宏

吴娟, 李建民, 尹新启, 等. 基于锥面衍射实现高效率双光栅光谱合成[J]. 强激光与粒子束, 2020, 32: 121006. doi: 10.11884/HPLPB202032.200192
引用本文: 吴娟, 李建民, 尹新启, 等. 基于锥面衍射实现高效率双光栅光谱合成[J]. 强激光与粒子束, 2020, 32: 121006. doi: 10.11884/HPLPB202032.200192
Wu Juan, Li Jianmin, Yin Xinqi, et al. Realizing high efficiency spectral beam combining with dual-gratings based on conical diffraction[J]. High Power Laser and Particle Beams, 2020, 32: 121006. doi: 10.11884/HPLPB202032.200192
Citation: Wu Juan, Li Jianmin, Yin Xinqi, et al. Realizing high efficiency spectral beam combining with dual-gratings based on conical diffraction[J]. High Power Laser and Particle Beams, 2020, 32: 121006. doi: 10.11884/HPLPB202032.200192

基于锥面衍射实现高效率双光栅光谱合成

doi: 10.11884/HPLPB202032.200192
详细信息
    作者简介:

    吴 娟(1985—),女,硕士,助理研究员,从事光束合成技术研究;29745683@qq.com

    通讯作者:

    颜 宏(1981—),男,博士,研究员,研究方向为光束合成理论与应用;yanhong@caep.cn

  • 中图分类号: TN248.1

Realizing high efficiency spectral beam combining with dual-gratings based on conical diffraction

  • 摘要: 分析了基于锥面衍射的双光栅光谱合成系统的可行性,设计了激光入射角为Littrow角附近的双多层介质膜(MLD)光栅光谱合成系统,开展了两路合成实验。当入射极角等于自准直入射角,入射方位角为6°时,光栅衍射效率近似等于光束自准直入射时的衍射效率。基于锥面衍射原理,对中心波长为1050.24 nm和1064.33 nm的两束光纤激光子束进行合成,入射极角为43.99°,测得合成效率为92.9%,较基于非锥面衍射的双光栅光谱合成系统的合成效率提高了8.8%;测得合成光斑光束质量Mx2=1.204,My2=1.467,与基于非锥面衍射的双光栅光谱合成系统输出光斑光束质量基本一致。
  • 图  1  光栅结构及入射光角度示意图

    Figure  1.  Structure of the grating and angle of incident wave vector

    图  2  基于锥面衍射的双MLD光栅光谱合成示意图

    Figure  2.  Schematic of the spectral combining approach with dual-MLD-grating based on conical diffraction

    图  3  Δyi=0时各子束中心坐标分布

    Figure  3.  Coordinates of the unit beam with Δyi=0

    图  4  双光栅锥面衍射光谱合成系统

    Figure  4.  Picture of the spectral combining approach with dual-MLD-grating based on conical diffraction

    图  5  双光栅锥面衍射光谱合成系统输出光束M2实测曲线

    Figure  5.  Beam quality measured after the combining based on conical diffraction

    图  6  基于非锥面衍射的光谱合成系统输出光束M2实测曲线

    Figure  6.  Beam quality measured after the approach based on non-conical diffraction

    图  7  锥面衍射和非锥面衍射下光栅衍射效率随入射角度变化曲线

    Figure  7.  Change of diffraction efficiency with different incident angle under non-conical diffraction

    表  1  一组双MLD光栅锥面衍射合成系统参数理论值

    Table  1.   Academic value of spectral combining approach with dual-MLD-grating based on conical diffraction

    No.unit beam wavelength/nmunit beam interval/mmθ/(°)φ/(°)L/mmHi/mmΔyi/mm
    11050.24043.995.77756−147.6540.042
    21051.281.943.995.77756−147.6590.037
    31052.313.843.995.77756−147.6650.031
    41053.355.743.995.77756−147.670.025
    51054.377.643.995.77756−147.6760.019
    61055.399.543.995.77756−147.6820.013
    71056.411.443.995.77756−147.6890.007
    81057.4113.343.995.77756−147.6960
    91058.4115.243.995.77756−147.703−0.007
    101059.4117.143.995.77756−147.71−0.014
    111060.419.043.995.77756−147.717−0.022
    121061.3920.943.995.77756−147.725−0.029
    131062.3822.843.995.77756−147.733−0.037
    141063.3524.743.995.77756−147.741−0.045
    151064.3326.643.995.77756−147.749−0.054
    下载: 导出CSV

    表  2  基于锥面衍射和非锥面衍射的双光栅光谱合成系统的合成效率对比

    Table  2.   Combining efficiency of the spectral combining approach under the conical diffraction and non-conical diffraction

    No.θ/(°)φ/(°)input power/mWoutput power/mWcombining efficiency/%diffraction type
    143.995.7723.2221.5792.9conical diffraction
    247.00023.2219.5384.1non-conical diffraction
    下载: 导出CSV
  • [1] Pratheepan M, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE J Select Top Quantum, 2009, 15(2): 337-343. doi: 10.1109/JSTQE.2008.2012266
    [2] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [3] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43: 0901009. doi: 10.3788/CJL201643.0901009
    [4] Chen Xu, Li Chaoming, Chen Xinrong, et al. Design of multilayer film polarization-independent gratings[C]//Proc of SPIE. 2019: 11336OF.
    [5] Tian Fei, Yan Hong, Chen Li, et al. Investigation on the influence of spectral linewidth broadening on the beam quality in spectral beam combination[C]//Proc of SPIE. 2014: 92553N.
    [6] Liu Quan, Jin Yunxia, Wu Jianhong, et al. Fabrication of the polarization independent spectral beam combining grating[C]//Proc of SPIE. 2017: 1025514.
    [7] Shen Biyao, Zeng Lijiang, Li Lifeng, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27: 111013.
    [8] Chen Junming, Zhang Yibing, Wang Yonglu, et al. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm[J]. Optics Letters, 2017, 42(19): 4016-4019. doi: 10.1364/OL.42.004016
    [9] Mao Xinyu, Li Chaoming, Qiu Keqiang, et al. Design and fabrication of 1300-line/mm polarization-independent reflection gratings for spectral beam combining[J]. Opt Commun, 2020, 458: 124883. doi: 10.1016/j.optcom.2019.124883
    [10] James E H, Richard N P. Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings[J]. Opt Eng, 2019, 58: 087105.
    [11] Bayanheshig, Qi Xiangdong, Tang Yuguo, et al. The vector diffraction theory analysis of chromatic dispersion characteristics of phase grating[J]. Acta Physica Sinica, 2003, 52(5): 1157-1161.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  337
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-11-02
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回