留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率半导体激光泵浦源研究进展

马骁宇 张娜玲 仲莉 刘素平 井红旗

马骁宇, 张娜玲, 仲莉, 等. 高功率半导体激光泵浦源研究进展[J]. 强激光与粒子束, 2020, 32: 121010. doi: 10.11884/HPLPB202032.200236
引用本文: 马骁宇, 张娜玲, 仲莉, 等. 高功率半导体激光泵浦源研究进展[J]. 强激光与粒子束, 2020, 32: 121010. doi: 10.11884/HPLPB202032.200236
Ma Xiaoyu, Zhang Naling, Zhong Li, et al. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32: 121010. doi: 10.11884/HPLPB202032.200236
Citation: Ma Xiaoyu, Zhang Naling, Zhong Li, et al. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32: 121010. doi: 10.11884/HPLPB202032.200236

高功率半导体激光泵浦源研究进展

doi: 10.11884/HPLPB202032.200236
基金项目: 国家重点研发计划项目(2018YFB1107300)
详细信息
    作者简介:

    马骁宇(1963—),男,研究员,博士生导师,主要从事大功率半导体激光器(列阵)及其组件、光纤激光器、固体激光器、存储用激光器等研究;maxy@semi.ac.cn

    通讯作者:

    张娜玲(1995—),女,博士研究生,主要从事大功率半导体激光器的研究;zhangnaling@semi.ac.cn

    仲 莉(1980—),女,研究员,博士生导师,主要从事大功率半导体激光器、特种泵浦光源及固体激光器研究等;zhongli@semi.ac.cn

  • 中图分类号: TN24

Research progress of high power semiconductor laser pump source

  • 摘要: 高功率半导体激光器是固体激光器和光纤激光器的主要泵浦源。激光泵浦源性能的大幅提升直接促进了固体激光器、光纤激光器等激光器的发展。主要介绍了8xx nm和9xx nm系列半导体激光泵浦源的最新研究进展,8xx nm单管输出功率已达18.8 W@95 µm,巴条输出功率已达1.8 kW(QCW),9xx nm单管输出功率已达35 W@100 µm,巴条输出功率已达1.98 kW(QCW)。谱宽<1 nm的窄谱宽半导体激光器输出功率可达14 W。展望了未来半导体激光器泵浦源的发展趋势。
  • 图  1  半导体激光器单元器件(图片来源于网络)

    Figure  1.  Semiconductor laser unit device (the picture comes from the internet)

    图  2  叠层激光器示意图(图片来源于网络)

    Figure  2.  Schematic of semiconductor laser stack (The picture comes from the internet)

    图  3  德国Jenoptik报道的808 nm单管激光器输出特性

    Figure  3.  Output characteristics of the 808 single-emitter diode lasers reported by Jenoptik

    图  4  中国科学院半导体研究所研制的880 nm 200 µm条宽单管芯半导体激光器综合参数测试图

    Figure  4.  Comprehensive parameter test chart of 880 nm 200 μm wide single-emitter semiconductor laser reported by Institute of Semiconductors,CAS

    图  5  美国nLight报道的88x nm单管激光器输出特性

    Figure  5.  Output characteristics of the 88x nm single-emitter diode lasers reported by nLight in USA

    图  6  美国nLight报道的808 nm 巴条激光器输出特性,其中HT代表高温,HE代表高效率

    Figure  6.  Output characteristics of the 808 nm laser bar reported by nLight in USA (HT represents high temperature, HE represents high efficiency)

    图  7  中科院半导体研究所研制的8xx nm连续半导体激光器特性参数测试图

    Figure  7.  Comprehensive parameter tests chart of 8xx nm (CW) semiconductor laser reported by Institute of Semiconductors,CAS

    图  8  美国JDSU报道的9xx nm单管激光器输出特性

    Figure  8.  Output characteristics of the 9xx nm single-emitter diode lasers reported by JDSU in USA

    图  9  FBH报道的940 nm 巴条激光器输出特性

    Figure  9.  Output characteristics of the 940 nm laser bar reported by Ferdinand-Braun-Institut

    图  10  Trumpf photonics报道的938 nm 巴条激光器输出特性

    Figure  10.  Output characteristics of the 938 nm laser bar reported by Trumpf photonics

    图  11  中科院半导体研究所研制的940 nm准连续巴条特性参数测试结果

    Figure  11.  Comprehensive parameter test results of 940 nm quasi-continuous laser bar reported by Institute of Semiconductors,CAS

    图  12  DBR和DFB激光器结构示意图

    Figure  12.  Schematic diagram of DBR and DFB laser structure

    表  1  8xx nm半导体激光器单管输出功率

    Table  1.   Output power of 8xx nm single-emitter lasers

    yearwavelength/nmoutput power/Wkey parametersconversion efficiency/%research groupreference
    2014 88x 18.8 95 μm,3.8 mm 58 USA,nLight [9]
    2015 808 10 190 μm,4 mm Japan,Optoenergy [10]
    2016 808 22 200 μm 54 JENOPTIK [11]
    2016 808 9 140 μm,2 mm 63% Coherent [12]
    2019 808 14 200 μm,4 mm 64 Ferdinand-Braun-Institut [13]
    2019 808 2.8 100 μm,2 mm Wang Yue [14]
    2020 880 19 200 μm,4 mm Institute of Semiconductors of CAS
    下载: 导出CSV

    表  2  8xx nm激光器巴条输出功率

    Table  2.   Output power of 8xx nm laser bar

    yearwavelength/nmoutput powerkey parametersfill factor/%research groupreference
    2012 88x QCW:560 W bar width:3 mm;
    cavity length:3 mm
    80 USA,nLight [19]
    2013 808 CW:150 W bar width:1 cm;
    cavity length:1.5 mm
    50 USA,nLight [20]
    2014 88x QCW:630 W bar width:3 mm;
    cavity length:3 mm
    80 USA,nLight [9]
    2016 808 QCW:200 W bar width:5 mm;
    cavity length:1.5 mm
    Russia [21]
    2016 880 QCW:250 W bar width:0.5 cm 80 USA,nLight [22]
    2017 80x QCW:210 W bar width:5 mm;
    cavity length:1 mm
    72 M.A. Ladugin [23]
    2017 880 1.8 kW(200 μs,14 Hz) bar width:1 cm;
    cavity length:3 mm
    80 USA,nLight [24]
    2017 808 QCW:613 W cavity length:2 mm 85 Xi’an Institute of Optics and
    Precision Mechanics of CAS
    [25]
    2018 808 QCW:500 W cavity length:1.5 mm 80 OSRAM [26]
    2020 8xx CW:200 W cm-bar Institute of Semiconductors of CAS
    下载: 导出CSV

    表  3  9xx nm半导体激光器单管输出功率

    Table  3.   Output power of 9xx nm single-emitter semiconductor lasers

    yearwavelength/nmoutput power/Wkey parametersconversion efficiency/%research groupreference
    2009 980 20 96 μm,4 mm Ferdinand-Braun-Institut [32]
    2013 975 15 100 μm,4 mm 74 Ferdinand-Braun-Institut [33]
    2013 915 13.5 85 μm,4 mm S.McDougall [34]
    2015 9xx 29.5 100 μm,5.7 mm USA,JDSU [35]
    2015 915 18 150 μm,5 mm 58 USA,nLight [36]
    2015 915 24 100 μm,4 mm 60 Japan,Optoenergy [37]
    2016 915 12.4 95 μm,4.8 mm 60 Research Institute of Tsinghua
    University in Shenzhen
    [38]
    2017 915 33 220 μm,4 mm 60 Japan,Fujikura [39]
    2018 940 14 100 μm,4 mm 63 Ferdinand-Braun-Institut [40]
    2019 975 20 200 μm,4 mm 66.7 Japan,Fujikura [41]
    2019 9xx 14.4 200 μm,2 mm 71.8 Institute of Semiconductors of CAS [42]
    2020 975 21 100 μm,4 mm Institute of Semiconductors of CAS [43]
    下载: 导出CSV

    表  4  9xx nm激光器巴条输出功率

    Table  4.   Output power of 9xx nm laser bar

    yearwavelength/nmoutput powerkey parametersfill factor/(%)research groupreference
    20139xxQCW:1.7 kWbar width:1 cm;
    cavity length:6 mm
    72Ferdinand-Braun-Institut[45]
    2014940CW:200 Wcavity length:4 mm50Jenoptik[46]
    2015940QCW:1.98 kWbar width:1 cm;
    cavity length:4 mm
    69Ferdinand-Braun-Institut[47]
    20159xx>300 W60USA,Trumpf Photonics[48]
    2016940QCW:1 kWbar width:1 cm;
    cavity length:4 mm
    69Ferdinand-Braun-Institut[49]
    2017940QCW:600 Wbar width:1 cm;
    cavity length:4 mm
    70M. M. Karow[50]
    2018938CW:476 W60USA,Trumpf Photonics[51]
    20199xx450 Wbar width:1 cm;
    cavity length:4.2 mm
    73II-VI Laser Enterprise[52]
    20199xx1 kW(0.2 ms,10 Hz)87Ferdinand-Braun-Institut[53]
    2019960665.6 W(500 μs)bar width:1 cm;
    cavity length:2 mm
    63.8Xi’an Institute of Optics and
    Precision Mechanics of CAS
    [54]
    20209xxCW:300 W,
    QCW:996 W
    cm-bar70Institute of Semiconductors of CAS
    下载: 导出CSV

    表  5  9xx nm高功率窄谱宽半导体激光器研究进展

    Table  5.   Research progress of 9xx nm high-power narrow-linewidth semiconductor laser

    yearwavelength/nmoutput power/Wdevice typespectral linewidth/nmresearch groupreference
    2010 975 10 DFB,second order grating <1 Ferdinand-Braun-Institut [57]
    2010 980 14 DBR,sixth order grating <1 Ferdinand-Braun-Institut [58]
    2012 976 11 DFB,eightieth-order grating <1 Ferdinand-Braun-Institut [59]
    2014 970 6 DFB,eightieth-order grating <0.7 Jonathan Decker [60]
    2017 975 5.5 DFB,second order grating <1 Mostallino [61]
    2019 980 10.7 DBR,sixth order grating 2.77 Qiao Chuang [62]
    下载: 导出CSV
  • [1] 闫宏宇. 高功率半导体激光器的光束特性评价[D]. 长春: 长春理工大学, 2019: 1-5.

    Yan Hongyu. Evaluation of beam characteristics of high power semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2019: 1-5
    [2] 王涛, 杜团结, 吴逢铁. LD泵浦的Nd:YVO4激光器被动式产生近似无衍射绿光[J]. 强激光与粒子束, 2014, 26:011007. (Wang Tao, Du Tuanjie, Wu Fengtie. Laser diode pumped Nd:YVO4laser generating quasi-non-diffracting green beam by passive axicon[J]. High Power Laser and Particle Beams, 2014, 26: 011007 doi: 10.3788/HPLPB20142601.11007
    [3] 乔忠良. 高亮度大功率半导体激光器研究[D]. 长春: 长春理工大学, 2011: 1-2.

    Qiao Zhongliang. Research on high-power high-brightness semiconductor lasers[D]. Changchun: Changchun University of Technology, 2011: 1-2
    [4] 李再金, 胡黎明, 王烨, 等. 808 nm高占空比大功率半导体激光器阵列[J]. 强激光与粒子束, 2009, 21(11):1615-1618. (Li Zaijin, Hu Liming, Wang Ye, et al. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 1615-1618
    [5] 许阳, 房强, 谢兆鑫, 等. 基于915 nm半导体激光单端前向抽运的单纤准单模2 kW全光纤激光振荡器[J]. 中国激光, 2018, 45:0401003. (Xu Yang, Fang Qiang, Xie Zhaoxin, et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 2018, 45: 0401003 doi: 10.3788/CJL201845.0401003
    [6] 刘储. 脊型波导852 nm半导体激光器模式特性研究[D]. 北京: 北京工业大学, 2017: 17-28.

    Liu Chu. Fundamental lateral mode characteristics of the 852 nm ridge waveguide semiconductor laser diode[D].Beijing: Beijing University of Technology, 2017: 17-28
    [7] 李璟, 马骁宇, 王俊. 高功率14xx nm锥形增益区脊形波导结构量子阱激光器的研制[J]. 半导体学报, 2007, 28(1):108-112. (Li Jing, Ma Xiaoyu, Wang Jun. High-power ridge waveguide tapered diode lasers at 14xx nm[J]. Chinese Journal of Semiconductors, 2007, 28(1): 108-112 doi: 10.3969/j.issn.1674-4926.2007.01.023
    [8] Winterfeldt M, Crump P, Knigge S, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1809-1812. doi: 10.1109/LPT.2015.2443186
    [9] Chen Z G, Bai J, Dong W, et al. High power and high efficiency kW 88x-nm multi-junction pulsed diode laser bars and arrays[C]//Proc of SPIE. 2014: 896514.
    [10] Yamagata Y, Yamada Y, Kaifuchi Y, et al. Performance and reliability of high power, high brightness 8xx-9xx nm semiconductor laser diodes[C]// IEEE High Power Diode Lasers & Systems Conference. 2015: 7-8.
    [11] Pietrzak A, Hülsewede R, Zorn M, et al. High-power single emitters and low fill factor bars emitting at 808 nm[C]//Proc of SPIE. 2016: 97330R.
    [12] Morales J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars and single emitters[C]//Proc of SPIE. 2016: 97330T.
    [13] Crump P, Frevert C, Maaβdorf A, et al. Efficient, high power pumps for mid-IR solid state lasers enabled by 200 k operation of 808 nm diode lasers[C]// IEEE Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2019.
    [14] 王岳, 王勇, 李占国, 等. 全息光刻制备808 nm腔面光栅半导体激光器[J]. 发光学报, 2019, 40(9):1130-1135. (Wang Yue, Wang Yong, Li Zhanguo, et al. 808 nm cavity surface grating semiconductor laser by holographic lithography[J]. Chinese Journal of Luminescence, 2019, 40(9): 1130-1135 doi: 10.3788/fgxb20194009.1130
    [15] Pierer J, Lützelschwab M, Grossmann S, et al. Automated assembly processes of high power single emitter diode lasers for 100 W in 105 μm/NA 0.15 fiber module[C]//Proc of SPIE. 2011: 78190I.
    [16] Jiang Xiaochen, Liu Rui, Gao Yanyan, et al. Packaging of wavelength stabilized 976 nm 100 W 105 m 0.15 NA fiber coupled diode lasers[C]//Proc of SPIE. 2016: 97300I.
    [17] 朱洪波, 郝明明, 彭航宇, 等. 基于808 nm半导体激光器单管合束技术的光纤耦合模块[J]. 中国激光, 2012, 39(5):1-5. (Zhu Hongbo, Hao Mingming, Peng Hangyu, et al. Module of fiber coupled diode laser based on 808 nm single emitters combination[J]. Chinese Journal of Lasers, 2012, 39(5): 1-5
    [18] 杨逸飞, 秦文斌, 刘友强, 等. 基于光束填充的多单管半导体激光器光纤耦合[J]. 强激光与粒子束, 2020, 32:071005. (Yang Yifei, Qin Wenbin, Liu Youqiang, et al. Research on fiber coupling of multi-single emitters diode laser based on beam filling[J]. High Power Laser and Particle Beams, 2020, 32: 071005
    [19] Bai J G, Chen Z, Leisher P, et al. High-efficiency kW-class QCW 88x nm diode semiconductor laser bars with passive cooling[C]//Proc of SPIE. 2012, 82412.
    [20] Bai J G, Bao L, Dong W, et al. Optimized performance of 808 nm diode laser bars for efficient high-power operation[C]//Proc of SPIE. 2013: 86050F7.
    [21] Bagaev T A, Ladugin M A, Andreev A Y, et al. High-power 808 nm laser bars (5 mm) with wall-plug efficiency more than 67%[C]//IEEE International Conference Laser Optics. 2016: R3-31.
    [22] Morales J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars and single emitters[C]//Proc of SPIE. 2016: 97330T.
    [23] Ladugin M A, Marmalyuk A, Padalitsa A, et al. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%[J]. Quantum Electronics, 2017, 47(4): 291-293. doi: 10.1070/QEL16365
    [24] Kanskar M, Chen Z, Dong W, et al. High power and high efficiency 1.8-kW pulsed diode laser bar[J]. Journal of Photonics for Energy, 2017, 7: 016003. doi: 10.1117/1.JPE.7.016003
    [25] 王贞福, 李特, 杨国文, 等. 808 nm准连续600 W高功率半导体激光芯片研制[J]. 中国激光, 2017, 44(6):43-48. (Wang Zhenfu, Li Te, Yang Guowen, et al. Development of 808 nm quasi-continuous wave laser diode bar with 600 W output power[J]. Chinese Journal of Lasers, 2017, 44(6): 43-48
    [26] Müller M, Hein S, Lauer C, et al. Advances in infrared high power lasers for long term operation[C]//Proc of SPIE. 2018: 105410I.
    [27] Köhler B, Unger A, Kindervater T, et al. Wavelength stabilized multi-kW diode laser systems[C]//Proc of SPIE. 2015: 93480Q.
    [28] Hou Dong, Wang Jingwei, Zhang Pu, et al. High power diode laser stack development using gold-tin bonding technology[C]//Proc of SPIE. 2015: 934604.
    [29] Sipes D L. Highly efficient neodymium: yttrium aluminum garnet laser end pumped by a semiconductor laser array[J]. Applied Physics Letters, 1985, 47(2): 74-76. doi: 10.1063/1.96256
    [30] Chung H S, Lee M S. Low noise, high efficiency L-band EDFA with 980 nm pumping[J]. Electronics Letters, 1999, 35(13): 1099-1100. doi: 10.1049/el:19990750
    [31] Chen J, Zhu X, Sibbett W. Rate-equation studies of erbium-doped fiber lasers with common pump and laser energy bands[J]. Journal of the Optical Society of America B, 1992, 9(10): 1876-1882. doi: 10.1364/JOSAB.9.001876
    [32] Crump P, Blume G, Paschke K, et al. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96μm[C]// Proc of SPIE. 2009: 719814.
    [33] Frevert C, Crump P, Wenzel H, et al. Efficiency optimization of high power diode lasers at low temperatures[C]//IEEE Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference. 2013.
    [34] McDougall S, McKee A, Eddie I, et al. Development of high power laser technology: 915 nm mini-bars for fibre laser pumping and red laser bars for cinema/projector applications[C]//IEEE High Power Diode Lasers and Systems Conference. 2013: 22-23.
    [35] Demir A, Peters M, Duesterberg R, et al. 29.5 W continuous wave output from 100 μm wide laser diode[C]//Proc of SPIE. 2015: 93480G.
    [36] Bao L, Kanskar M, Devito M, et al. High reliability demonstrated on high-power and high-brightness diode lasers[C]//Proc of SPIE. 2015: 93480C.
    [37] Yamagata Y, Yamada Y, Muto M, et al. 915 nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)[C]//Proc of SPIE. 2015: 93480F.
    [38] Hu M, Wang W M, Kuang L X, et al. High-brightness 95-μm broad-area 915 nm lasers with 29.4 W COMD power[C]//IEEE Asia Communications and Photonics Conference. 2016.
    [39] Zediker M S, Kaifuchi Y, Yamagata Y, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[C]//Proc of SPIE. 2017: 100860D.
    [40] Kaul T, Erbert G, Maassdorf A, et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs[J]. Semiconductor Science and technology, 2018, 33: 035005. doi: 10.1088/1361-6641/aaa221
    [41] Kaifuchi Y, Yoshida K, Yamagata Y, et al. Enhanced power conversion efficiency in 900 nm range single emitter broad stripe laser diodes maintaining high power operability[C]// Proc of SPIE. 2019: 109000F.
    [42] 袁庆贺, 井红旗, 仲莉, 等. 高功率高可靠性9xx nm激光二极管[J]. 中国激光, 2020, 47(4):61-65. (Yuan Qinghe, Jing Hongqi, Zhong Li, et al. High-power and high-reliability 9xx-nm laser diode[J]. Chinese Journal of Lasers, 2020, 47(4): 61-65
    [43] 曼玉选, 仲莉, 马骁宇, 等. 极低内部光学损耗975 nm半导体激光器[J]. 光学学报, 2020:40:19140011. (Man Yuxuan, Zhong Li, Ma Xiaoyu, et al. 975 nm semiconductor lasers with ultra-low internal optical loss[J]. Chinese Journal of Luminescence, 2020: 40:19140011
    [44] Crump P, Roder C, Staske R, et al. Limitations to peak continuous wave power in high power broad area single emitter 980 nm diode lasers[C]//IEEE European Conference on Lasers & Electro-optics & European Quantum Electronics Conference. 2009.
    [45] Crump P, Frevert C, Wenzel H, et al. Cryolaser: Innovative cryogenic diode laser bars optimized for emerging ultra-high power laser applications[C]// IEEE Conference on Lasers and Electro-Optics.2013.
    [46] Pietrzak A, Huelsewede R, Zorn M, et al. New highly efficient laser bars and laser arrays for 8xx-10xx nm pumping applications[C]//Proc of SPIE. 2014: 89650T.
    [47] Frevert C, Crump P, Bugge F. Low-temperature optimized 940 nm diode laser bars with 1.98 kW peak power at 203 K[C]//IEEE Conference on Lasers and Electro-Optics.2015
    [48] Heinemann S, An H, Barnowski T, et al. Packaging of high-power bars for optical pumping and direct applications[C]//Proc of SPIE. 2015: 934807.
    [49] Frevert C, Bugge F, Knigge S, et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K: analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K[C]//Proc of SPIE. 2016: 97330L.
    [50] Karow M M, Frevert C, Platz R, et al. Efficient 600-W-laser bars for long-pulse pump applications at 940 and 975 nm[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1683-1686. doi: 10.1109/LPT.2017.2743242
    [51] Heinemann S, McDougall S D, Ryu G, et al. Advanced chip designs and novel cooling techniques for brightness, scaling of industrial, high power diode laser bars[C]//Proc of SPIE. 2018: 105140Y.
    [52] Jürgen Müller, Rainer Bättig, Beer V, et al. Towards 300 W high power laser bars[C]//Proc of SPIE. 2019: 109000C.
    [53] Karow M M, Martin D, Della Casa P, et al. Narrower far field and higher efficiency in 1 kW diode-laser bars using improved lateral structuring[C]//IEEE Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference.2019
    [54] 李波, 王贞福, 仇伯仓, 等. 高功率准连续半导体激光阵列中应变对独立发光点性能的影响[J]. 光子学报, 2020, 49(9):25-32. (Li Bo, Wang Zhenfu, Qiu Bocang, et al. Influence of strain on the performance of independent emitters in high power quasi-continuous semiconductor laser array[J]. Acta Photonica Sinica, 2020, 49(9): 25-32
    [55] Demidovich A A, Shkadarevich A P, Danailov M B, et al. Comparison of CW laser performance of Nd:KGW, Nd: YAG, Nd: BEL, and Nd: YVO4 under laser diode pumping[J]. Applied Physics B, 1998, 67(1): 11-15. doi: 10.1007/s003400050467
    [56] Leisher P, Price K, Karlsen S, et al. High-performance wavelength-locked diode lasers[C]//Proc of SPIE. 2009: 719812.
    [57] Crump P, Schultz C M, Pietrzak A, et al. 975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications[C]//Proc of SPIE. 2010: 75830N.
    [58] Fricke J, Bugge F, Ginolas A, et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 284-286. doi: 10.1109/LPT.2009.2038792
    [59] Fricke J, Wenzel H, Bugge F, et al. High-power distributed feedback lasers with surface gratings[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1443-1445. doi: 10.1109/LPT.2012.2206378
    [60] Decker J, Crump P, Fricke J, et al. Narrow stripe broad area lasers with high order distributed feedback surface gratings[J]. IEEE Photonics Technology Letters, 2014, 26(8): 829-832. doi: 10.1109/LPT.2014.2307115
    [61] Mostallino R, Garcia M, Larrue A, et al. Thermal management characterization of microassemblied high power distributed-feedback broad area lasers emitting at 975 nm[C]// IEEE 67th Electronic Components and Technology Conference. 2017: 563-574.
    [62] 乔闯, 苏瑞巩, 李翔, 等. 980 nm高功率DBR半导体激光器的设计及工艺[J]. 中国激光, 2019, 46(7):16-20. (Qiao Chuang, Su Ruigong, Li Xiang, et al. Design and fabrication of 980 nm distributed Bragg reflection semiconductor laser with high power[J]. Chinese Journal of Lasers, 2019, 46(7): 16-20
    [63] Lauer C, Bachmann A, Furitsch M, et al. Extra bright high power laser bars[C]//IEEE High Power Diode Lasers and Systems Conference. 2015: 37-38.
    [64] Wang X, Wenzel H, Eppich B, et al. 56 W optical output power at 970 nm from a truncated tapered semiconductor optical amplifier[C]//IEEE Photonic Society 24th Annual Meeting. 2011: 577-578.
    [65] Vu T N, Klehr A, Sumpf B, et al. Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm[J]. Optics Letters, 2014, 39(17): 5138-5141. doi: 10.1364/OL.39.005138
    [66] Fiebig C, Blume G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255. doi: 10.1049/el:20081371
    [67] Wang X Z, Erbert G, Wenzel H, et al. 17 W near-diffraction-limited 970 nm output from a tapered semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(2): 115-118. doi: 10.1109/LPT.2012.2228185
    [68] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学, 2019, 12(1):51-61. (Sun Shengming, Fan Jie, Xu Li, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 51-61
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  3175
  • HTML全文浏览量:  670
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-11-06
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回