留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大于500 W非水冷光纤包层光剥离器

刘玙 李敏 黄珊 吴文杰 冯曦 沈本剑 宋华青 陶汝茂 王建军 景峰

刘玙, 李敏, 黄珊, 等. 大于500 W非水冷光纤包层光剥离器[J]. 强激光与粒子束, 2021, 33: 021005. doi: 10.11884/HPLPB202133.200182
引用本文: 刘玙, 李敏, 黄珊, 等. 大于500 W非水冷光纤包层光剥离器[J]. 强激光与粒子束, 2021, 33: 021005. doi: 10.11884/HPLPB202133.200182
Liu Yu, Li Min, Huang Shan, et al. >500 W passively-cooled fiber cladding light stripper[J]. High Power Laser and Particle Beams, 2021, 33: 021005. doi: 10.11884/HPLPB202133.200182
Citation: Liu Yu, Li Min, Huang Shan, et al. >500 W passively-cooled fiber cladding light stripper[J]. High Power Laser and Particle Beams, 2021, 33: 021005. doi: 10.11884/HPLPB202133.200182

大于500 W非水冷光纤包层光剥离器

doi: 10.11884/HPLPB202133.200182
基金项目: 国家自然科学基金项目(61905226,61805222);国家重点研发计划项目(2017YFB1104401)
详细信息
    作者简介:

    刘 玙(1987—),女,博士,助理研究员,从事光纤激光器件研究;liuyu_ly@foxmail.com

    通讯作者:

    陶汝茂(1987—),男,博士,副研究员,从事光纤激光技术研究;taorumao@sohu.com

  • 中图分类号: TN248

>500 W passively-cooled fiber cladding light stripper

  • 摘要: 为实现高功率光纤包层光剥离器被动冷却,需要同时对光纤和封装壳体进行有效热管理。采用一种基于铁氟龙毛细管分段化学腐蚀光纤的制备技术,使用紫铜作为壳体材料,并通过有限元分析算法对壳体温度场进行仿真计算,对壳体各个结构参量进行优化分析,设计了满足500 W散热能力的包层光剥离器,并开展了实验验证。研究结果表明,采用铁氟龙管分段腐蚀法,包层光剥离比达到23.7 dB,光纤裸纤上的功率温升速率仅0.007 ℃/W。采用优化设计的壳体,在540 W功率注入下,包层光剥离器使用水冷冷板冷却可以连续出光,壳体最高温度58.7 ℃,使用相变冷板冷却可以单次安全出光50 s,壳体最高温度80 ℃。此研究结果可以为高功率光纤激光设计与研发提供重要参考。
  • 图  1  CPS壳体结构建模和热仿真结果示例

    Figure  1.  Modeling and thermal simulation of packaged CPS

    图  2  CPS壳体结构参数对CPS封装件最高温度的影响,假定注入功率为500 W

    Figure  2.  Impact of structural parameters on maximum temperature of packaged CPS, assuming 500 W of power injection

    图  3  CPS功率和温度测试光路图

    Figure  3.  Experimental setup for testing the power stripping and temperature rise behaviors of CPS

    图  4  CPS毛化区温升曲线

    Figure  4.  Temperature rise curve of CPS micro-structured area

    图  5  CPS封装件安装于水冷冷板测试结果

    Figure  5.  Test results of packaged CPS mounted on water-cooled cold plate

    图  6  CPS封装件安装于相变蓄冷板测试结果

    Figure  6.  Test results of packaged CPS mounted on cold plate filled with phase-change material

  • [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE J Sel Topics Quantum Electron, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [2] Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [3] Daniel J, Simakov N, Hemming A, et al. Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre[C]//Proc of SPIE. 2016: 972808.
    [4] Bradford J, Cook J, Antonio-Lopez J E, et al. Demonstration of passively cooled high-power Yb fiber amplifier[C]//Proc of SPIE. 2018: 105121G.
    [5] Bansal L, Sienkowski R, Pincha J, et al. Passively cooled pump signal combiners at 2.1 kW for fiber laser and amplifier systems[C]//Proc of SPIE. 2020: 1126023.
    [6] 刘岩, 朱辰, 张利明, 等. 相变直冷高功率光纤激光器[J]. 激光与红外, 2019, 49(12):1425-1430. (Liu Yan, Zhu Chen, Zhang Liming, et al. Phase change direct cooling high power fiber laser[J]. Laser & Infrared, 2019, 49(12): 1425-1430
    [7] Bansal L, Sienkowski R, Neale C, et al. Uncooled pump combiners for fiber laser and amplifier systems[C]//Proc of SPIE. 2018: 105130V.
    [8] Holehouse N, Magné J, Auger M. High power performance limits of fiber components[C]//Proc of SPIE. 2015: 93441F.
    [9] 孙静, 邹淑珍, 陈寒, 等. 高功率包层光剥离器最新研究进展[J]. 激光与光电子学进展, 2017, 54:110001. (Sun Jing, Zou Shuzhen, Chen Han, et al. Recent progress of high-power cladding light stripper[J]. Laser & Optoelectronics Progress, 2017, 54: 110001
    [10] 郭良, 谌鸿伟, 王泽锋, 等. 被动双包层光纤中包层光产生实验研究[J]. 激光与光电子学进展, 2014, 51:020602. (Guo Liang, Chen Hongwei, Wang Zefeng, et al. Experimental study on the generation of cladding light in passive double-clad fiber[J]. Laser & Optoelectronics Progress, 2014, 51: 020602
    [11] Wetter A, Faucher M, Sévigny B. High power cladding light strippers[C]//Proc of SPIE. 2008: 687327.
    [12] Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
    [13] Huang Zhihua, Liang Xiaobao, Li Chengyu, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302. doi: 10.1364/AO.55.000297
    [14] Langseth J E, Mandl A E. All glass fiber laser cladding mode stripper: US8433161B2 [P]. 2013-04-30.
    [15] Guo Wei, Chen Zilun, Zhou Hang, et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers[J]. IEEE Photonics Journal, 2014, 6: 1501106.
    [16] Yin Lu, Yan Mingjian, Han Zhigang, et al. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies[J]. Optics Express, 2017, 25(8): 8760-8776. doi: 10.1364/OE.25.008760
    [17] Zou Shuzhen, Chen Han, Zhang Jingyuan, et al. Cladding light stripper of high average stripped power density with high attenuation of 39 dB and low temperature rise[J]. IEEE Photonics Journal, 2018, 10: 7100610.
    [18] Yan Ping, Sun Junyi, Huang Yusheng, et al. Kilowatt-level cladding light stripper for high-power fiber laser[J]. Applied Optics, 2017, 56(7): 1935-1939. doi: 10.1364/AO.56.001935
    [19] An Haixia, Liu Xiaogang, Bi Zhiyue. Study and design of cladding power stripper for high power fiber laser systems[J]. High Power Laser Science and Engineering, 2016, 4: e28. doi: 10.1017/hpl.2016.26
    [20] 董守增, 陈晓龙, 赵翔, 等. 基于相变材料冷却的光纤包层光滤除器的设计[J]. 中国激光, 2018, 45:0906001. (Dong Shouzeng, Chen Xiaolong, Zhao Xiang, et al. Design of optical fiber cladding filter based on phase change material cooling[J]. Chinese Journal of Lasers, 2018, 45: 0906001 doi: 10.3788/CJL201845.0906001
    [21] Wysmolek M, Ottenhues C, Pulzer T, et al. Microstructured fiber cladding light stripper for kilowatt-class laser systems[J]. Applied Optics, 2018, 57(23): 6640-6644. doi: 10.1364/AO.57.006640
    [22] Poozesh R, Norouzy A, Golshan A H, et al. A novel method for stripping cladding lights in high power fiber lasers and amplifiers[J]. Journal of Lightwave Technology, 2012, 30(20): 3199-3202. doi: 10.1109/JLT.2012.2213295
    [23] Kliner A, Hou K C, Plötner M, et al. Fabrication and evaluation of a 500 W cladding-light stripper[C]//Proc of SPIE. 2013: 86160N.
    [24] Liu Yu, Huang Shan, Wu Wenjie, et al. >2 kW high stability robust fiber cladding mode stripper with moderate package temperature rising[J]. IEEE Photonics Technology Letters, 2020, 32(18): 1151-1154. doi: 10.1109/LPT.2020.3011592
    [25] 胡志涛, 陈晓龙, 何兵, 等. 高功率光纤激光器包层光滤除器的温度场研究[J]. 中国激光, 2016, 43:0701004. (Hu Zhitao, Chen Xiaolong, He Bing, et al. Temperature distribution of cladding light strippers in high power all-fiber lasers[J]. Chinese Journal of Lasers, 2016, 43: 0701004 doi: 10.3788/CJL201643.0701004
  • 加载中
图(6)
计量
  • 文章访问数:  1499
  • HTML全文浏览量:  345
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-11-03
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回