留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33: 012004. doi: 10.11884/HPLPB202133.200235
引用本文: 单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33: 012004. doi: 10.11884/HPLPB202133.200235
Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004. doi: 10.11884/HPLPB202133.200235
Citation: Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004. doi: 10.11884/HPLPB202133.200235

激光惯性约束聚变动理学效应研究进展

doi: 10.11884/HPLPB202133.200235
基金项目: 国家自然科学基金项目(11875048,11775202,11875202);科学挑战专题(TZ2016005);等离子体物理重点实验室自主科研项目(JCKYS2018212019)
详细信息
    作者简介:

    单连强(1981—),男,博士,研究员,从事惯性约束聚变物理研究;slqiang@caep.cn

    通讯作者:

    周维民(1978—),男,博士,研究员,从事高能量密度物理研究;zhouwm@caep.cn

    谷渝秋(1966—),男,博士,研究员,从事高能量密度物理研究;yqgu@caep.cn

  • 中图分类号: O536

Research progress of kinetic effects in laser inertial confinement fusion

  • 摘要: 动理学效应的研究是近年来激光惯性约束聚变领域的研究热点,有助于理解实验结果和传统流体模拟之间的偏差。间接驱动黑腔中等离子体的温度、密度跨越多个量级且靶丸组分复杂,在局域的高温低密度区域,粒子的非平衡效应开始变得显著,可能会间接影响内爆性能。对ICF领域动理学效应的概念和部分进展做了简要综述。
  • 图  1  NIF170601发次对应模拟的黑腔等离子体不同区域温度、密度演化曲线(实线),及归一化离子碰撞平均自由程等高线(虚线)。(□)峰值激光功率时刻,(○)冲击波回弹时刻,(×)峰值燃烧时刻[15]

    Figure  1.  Physical regime of density and temperature in the simulation of NIF shot N170601 (solid lines). Contours show normalized ion mean-free-path (dashed lines). Symbols indicate time of (□) peak laser power,(○) shock rebound,and (×) peak burn[15]

    图  2  间接驱动真空黑腔等离子体膨胀的D3He质子照相实验[27]

    Figure  2.  D3He proton radiography experiment of plasma expansion in indirect-driven vacuum hohlraum[27]

    图  3  真空和充气条件下Au等离子体和C等离子体对撞Thomson散射结果和混合比例[19]

    Figure  3.  Thomson scattering results and mixing ratio of Au and C plasmas in vacuum and gas filled condition[19]

    图  4  腔壁靶丸等离子体碰撞区域离子非平衡效应的实验表征和粒子模拟[34]

    Figure  4.  Experimental characterization and PIC simulation of ion non-equilibrium effect in collision region between hohlraum wall and target plasma[34]

    图  5  流体主导向动理学主导过渡的爆推靶内爆结果[20]

    Figure  5.  Implosion results of the transition from fluid dominated to kinetic effect dominated[20]

    图  6  实验测量和LILAC流体模拟给出的YDD/YDTYTT/YDT随离子温度的变化趋势[55]

    Figure  6.  Measured YDD/YDTYTT/YDT and corresponding LILAC simulation yield ratios as a function of ion temperature[55]

    图  7  不同构型爆推靶聚变产额[21]

    Figure  7.  Fusion yield of different configurations of exploding pusher target[21]

    图  8  质子照相得到的内爆芯部和冲击前沿的电场结构[68-69]

    Figure  8.  Proton radiography results of electric field structure of implosion core and shock front[68-69]

  • [1] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343. doi: 10.1038/nature13008
    [3] Le Pape S, Berzak Hopkins L F, Divol L, et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J]. Physical Review Letters, 2018, 120: 245003. doi: 10.1103/PhysRevLett.120.245003
    [4] Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [5] Hurricane O A, Springer P T, Patel P K, et al. Approaching a burning plasma on the NIF[J]. Physics of Plasmas, 2019, 26: 052704. doi: 10.1063/1.5087256
    [6] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
    [7] 裴文兵,朱少平. 激光聚变中的科学计算[J]. 物理, 2009, 38(8):559-568. (Pei Wenbing, Zhu Shaoping. Scientific computing for laser fusion[J]. Physics, 2009, 38(8): 559-568 doi: 10.3321/j.issn:0379-4148.2009.08.005
    [8] Marinak M M, Tipton R E, Landen O L, et al. Three-dimensional simulations of Nova high growth factor capsule implosion experiments[J]. Physics of Plasmas, 1996, 3(5): 2070-2076. doi: 10.1063/1.872004
    [9] Clark D S, Weber C R, Milovich J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Physics of Plasmas, 2019, 26: 050601. doi: 10.1063/1.5091449
    [10] Mora P, Yahi H. Thermal heat-flux reduction in laser-produced plasmas[J]. Physical Review A, 1982, 26: 2259-2261. doi: 10.1103/PhysRevA.26.2259
    [11] Matte J P, Lamoureux M, Moller C, et al. Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas[J]. Plasma Physics and Controlled Fusion, 1988, 30: 1665-1689. doi: 10.1088/0741-3335/30/12/004
    [12] Zhang W S, Cai H B, Shan L Q, et al. Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona[J]. Nuclear Fusion, 2017, 57: 066012. doi: 10.1088/1741-4326/aa686c
    [13] Clark D S, Kritcher A L, Milovich J L, et al. Capsule modeling of high foot implosion experiments on the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 055006. doi: 10.1088/1361-6587/aa6216
    [14] Hopkins L B, LePape S, Divol L, et al. Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)[J]. Plasma Physics and Controlled Fusion, 2019, 61: 014023. doi: 10.1088/1361-6587/aad97e
    [15] Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: Present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064001. doi: 10.1088/1361-6587/aab79f
    [16] Jones O S, Cerjan C J, Marinak M M, et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments[J]. Physics of Plasmas, 2012, 19: 056315. doi: 10.1063/1.4718595
    [17] Hopkins L F B, Meezan N B, Le Pape S, et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum[J]. Physical Review Letters, 2015, 114: 175001. doi: 10.1103/PhysRevLett.114.175001
    [18] Hopkins L F B, Le Pape S, Divol L, et al. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators[J]. Physics of Plasmas, 2015, 22: 056318. doi: 10.1063/1.4921151
    [19] Le Pape S, Divol L, Huser G, et al. Plasma collision in a gas atmosphere[J]. Physical Review Letters, 2020, 124: 6: 025003.
    [20] Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 2014, 112: 185001. doi: 10.1103/PhysRevLett.112.185001
    [21] Rinderknecht H G, Sio H, Li C K, et al. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions[J]. Physical Review Letters, 2014, 112: 135001. doi: 10.1103/PhysRevLett.112.135001
    [22] Amendt P, Landen O L, Robey H F, et al. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures[J]. Physical Review Letters, 2010, 105: 115005. doi: 10.1103/PhysRevLett.105.115005
    [23] Rinderknecht H G, Rosenberg M J, Li C K, et al. Ion thermal decoupling and species separation in shock-driven implosions[J]. Physical Review Letters, 2015, 114: 025001. doi: 10.1103/PhysRevLett.114.025001
    [24] Bellei C, Rinderknecht H, Zylstra A, et al. Species separation and kinetic effects in collisional plasma shocks[J]. Physics of Plasmas, 2014, 21: 056310. doi: 10.1063/1.4876614
    [25] Byvank T, Langendorf S J, Thoma C, et al. Observation of shock-front separation in multi-ion-species collisional plasma shocks[J]. Physics of Plasmas, 2020, 27: 042302. doi: 10.1063/1.5139239
    [26] Sio H, Larroche O, Atzeni S, et al. Probing ion species separation and ion thermal decoupling in shock-driven implosions using multiple nuclear reaction histories[J]. Physics of Plasmas, 2019, 26: 072703. doi: 10.1063/1.5097605
    [27] Li C K, Seguin F H, Frenje J A, et al. Charged-particle probing of X-ray-driven inertial-fusion implosions[J]. Science, 2010, 327(5970): 1231-1235. doi: 10.1126/science.1185747
    [28] Li C K, Seguin F H, Frenje J A, et al. Impeding hohlraum plasma stagnation in inertial-confinement fusion[J]. Physical Review Letters, 2012, 108: 025001. doi: 10.1103/PhysRevLett.108.025001
    [29] Li C K, Seguin F H, Frenje J A, et al. Proton imaging of hohlraum plasma stagnation in inertial-confinement-fusion experiments[J]. Nuclear Fusion, 2013, 53: 073022. doi: 10.1088/0029-5515/53/7/073022
    [30] Hua R, Kim J, Sherlock M, et al. Self-generated magnetic and electric fields at a mach-6 shock front in a low density helium gas by dual-angle proton radiography[J]. Physical Review Letters, 2019, 123: 215001. doi: 10.1103/PhysRevLett.123.215001
    [31] Amendt P, Wilks S C, Bellei C, et al. The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database[J]. Physics of Plasmas, 2011, 18: 056308. doi: 10.1063/1.3577577
    [32] Dewald E L, Hartemann F, Michel P, et al. Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums[J]. Physical Review Letters, 2016, 116: 075003. doi: 10.1103/PhysRevLett.116.075003
    [33] Strozzi D J, Bailey D S, Michel P, et al. Interplay of laser-plasma interactions and inertial fusion hydrodynamics[J]. Physical Review Letters, 2017, 118: 025002. doi: 10.1103/PhysRevLett.118.025002
    [34] Shan L Q, Cai H B, Zhang W S, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001. doi: 10.1103/PhysRevLett.120.195001
    [35] Cai H B, Shan L Q, Yuan Z Q, et al. Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. High Energy Density Physics, 2020, 36: 100756. doi: 10.1016/j.hedp.2020.100756
    [36] Welch D R, Rose D V, Clark R E, et al. Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation[J]. Computer Physics Communications, 2004, 164(1/3): 183-188.
    [37] Higginson D P, Amendt P, Meezan N, et al. Hybrid particle-in-cell simulations of laser-driven plasma interpenetration, heating, and entrainment[J]. Physics of Plasmas, 2019, 26: 112107. doi: 10.1063/1.5110512
    [38] Mason R J, Kirkpatrick R C, Faehl R J. Real viscosity effects in inertial confinement fusion target deuterium-tritium micro-implosions[J]. Physics of Plasmas, 2014, 21: 022705. doi: 10.1063/1.4864641
    [39] Mason R J. Implicit moment pic-hybrid simulation of collisional plasmas[J]. Journal of Computational Physics, 1983, 51(3): 484-501. doi: 10.1016/0021-9991(83)90165-1
    [40] Le A, Kwan T J T, Schmitt M J, et al. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment[J]. Physics of Plasmas, 2016, 23: 102705. doi: 10.1063/1.4965913
    [41] Thoma C, Welch D R, Clark R E, et al. Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls[J]. Physics of Plasmas, 2017, 24: 062707. doi: 10.1063/1.4985314
    [42] Hoffman N M, Zimmerman G B, Molvig K, et al. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions[J]. Physics of Plasmas, 2015, 22: 052707. doi: 10.1063/1.4921130
    [43] Larroche O, Rinderknecht H G, Rosenberg M J, et al. Ion-kinetic simulations of D3He gas-filled inertial confinement fusion target implosions with moderate to large Knudsen number[J]. Physics of Plasmas, 2016, 23: 012701. doi: 10.1063/1.4939025
    [44] Molvig K, Hoffman N M, Albright B J, et al. Knudsen layer reduction of fusion reactivity[J]. Physical Review Letters, 2012, 109: 095001. doi: 10.1103/PhysRevLett.109.095001
    [45] Kagan G, Svyatskiy D, Rinderknecht H G, et al. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions[J]. Physical Review Letters, 2015, 115: 105002. doi: 10.1103/PhysRevLett.115.105002
    [46] Albright B J, Molvig K, Huang C K, et al. Revised Knudsen-layer reduction of fusion reactivity[J]. Physics of Plasmas, 2013, 20: 122705. doi: 10.1063/1.4833639
    [47] McDevitt C J, Tang X Z, Guo Z, et al. A comparative study of the tail ion distribution with reduced Fokker–Planck models[J]. Physics of Plasmas, 2014, 21: 032708. doi: 10.1063/1.4868732
    [48] Asahina T, Nagatomo H, Sunahara A, et al. Validation of thermal conductivity in magnetized plasmas using particle-in-cell simulations[J]. Physics of Plasmas, 2017, 24: 042117. doi: 10.1063/1.4981233
    [49] Li C K, Seguin F H, Frenje J A, et al. Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles[J]. Plasma Physics and Controlled Fusion, 2010, 52: 124027. doi: 10.1088/0741-3335/52/12/124027
    [50] Kritcher A L, Hinkel D E, Callahan D A, et al. Integrated modeling of cryogenic layered highfoot experiments at the NIF[J]. Physics of Plasmas, 2016, 23: 052709. doi: 10.1063/1.4949351
    [51] Johnson M G, Knauer J P, Cerjan C J, et al. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility[J]. Physical Review E, 2016, 94: 021202. doi: 10.1103/PhysRevE.94.021202
    [52] Rosenberg M J, Zylstra A B, Seguin F H, et al. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF[J]. Physics of Plasmas, 2014, 21: 122712. doi: 10.1063/1.4905064
    [53] Rygg J R, Frenje J A, Li C K, et al. Tests of the hydrodynamic equivalence of direct-drive implosions with different D2 and 3He mixtures[J]. Physics of Plasmas, 2006, 13: 052702. doi: 10.1063/1.2192759
    [54] Herrmann H W, Langenbrunner J R, Mack J M, et al. Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition[J]. Physics of Plasmas, 2009, 16: 056312. doi: 10.1063/1.3141062
    [55] Casey D T, Frenje J A, Johnson M G, et al. Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions[J]. Physical Review Letters, 2012, 108: 075002. doi: 10.1103/PhysRevLett.108.075002
    [56] Amendt P, Bellei C, Ross J. S, et al Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions[J]. Physical Review E, 2015, 91: 023103. doi: 10.1103/PhysRevE.91.023103
    [57] Rinderknecht H G, Amendt P A, Rosenberg M J, et al. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF[J]. Nuclear Fusion, 2017, 57: 066014. doi: 10.1088/1741-4326/aa69d9
    [58] Forrest C J, Radha P B, Knauer J P, et al. First Measurements of deuterium-tritium and deuterium-deuterium fusion reaction yields in ignition-scalable direct-drive implosions[J]. Physical Review Letters, 2017, 118: 095002. doi: 10.1103/PhysRevLett.118.095002
    [59] Hsu S C, Joshi T R, Hakel P, et al. Observation of interspecies ion separation in inertial-confinement-fusion implosions[J]. Europhysics Letters, 2016, 11: 65001.
    [60] Joshi T R, Hsu S C, Hakel P, et al. Progress on observations of interspecies ion separation in inertial-confinement-fusion implosions via imaging X-ray spectroscopy[J]. Physics of Plasmas, 2019, 26: 062702. doi: 10.1063/1.5092998
    [61] Joshi T R, Hakel P, Hsu S C, et al. Observation and modeling of interspecies ion separation in inertial confinement fusion implosions via imaging x-ray spectroscopy[J]. Physics of Plasmas, 2017, 24: 056305. doi: 10.1063/1.4978887
    [62] Sio H, Frenje J A, Katz J, et al. A particle X-ray temporal diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in inertial confinement fusion plasmas at OMEGA[J]. Review of Scientific Instruments, 2016, 87: 11d.
    [63] Sio H, Li C K, Parker C E, et al. Fuel-ion diffusion in shock-driven inertial confinement fusion implosions[J]. Matter and Radiation at Extremes, 2019, 4: 055401. doi: 10.1063/1.5090783
    [64] Sio H, Frenje J A, Le A, et al. Observations of multiple nuclear reaction histories and fuel-ion species dynamics in shock-driven inertial confinement fusion implosions[J]. Physical Review Letters, 2019, 122: 035001. doi: 10.1103/PhysRevLett.122.035001
    [65] Zylstra A B, Hoffman N M, Herrmann H W, et al. Diffusion-dominated mixing in moderate convergence implosions[J]. Physical Review E, 2018, 97: 061201. doi: 10.1103/PhysRevE.97.061201
    [66] Zylstra A B, Herrmann H W, Kim Y H, et al. Simultaneous measurement of the HT and DT fusion burn histories in inertial fusion implosions[J]. Review of Scientific Instruments, 2017, 88: 053504. doi: 10.1063/1.4983923
    [67] Bellei C, Amendt P A. Shock-induced mix across an ideal interface[J]. Physics of Plasmas, 2017, 24: 040703. doi: 10.1063/1.4979904
    [68] Li C K, Seguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 2008, 100: 225001. doi: 10.1103/PhysRevLett.100.225001
    [69] Hua R, Sio H, Wilks S C, et al. Study of self-generated fields in strongly-shocked, low-density systems using broadband proton radiography[J]. Applied Physics Letters, 2017, 111: 034102. doi: 10.1063/1.4995226
    [70] Glenzer S H, Rozmus W, Bychenkov V Y, et al. Anomalous absorption of high-energy green laser light in high-Z plasmas[J]. Physical Review Letters, 2002, 88: 235002. doi: 10.1103/PhysRevLett.88.235002
    [71] Michel P, Divol L, Williams E A, et al. Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer[J]. Physical Review Letters, 2009, 102: 025004. doi: 10.1103/PhysRevLett.102.025004
    [72] Gong T, Hao L, Li Z, et al. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4: 055202. doi: 10.1063/1.5092446
    [73] 蔡洪波, 张文帅, 杜报, 等. 惯性约束聚变黑腔内等离子体界面处的动理学效应及其影响[J]. 强激光与粒子束, 2020, 32:092007. (Cai Hongbo, Zhang Wenshuai, Du Bao, et al. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[[J]. High Power Laser and Particle Beams, 2020, 32: 092007
    [74] 李志超, 赵航, 龚韬, 等. 激光惯性约束聚变中光学汤姆逊散射研究进展[J]. 强激光与粒子束, 2020, 32:092004. (Li Zhichao, Zhao Hang, Gong Tao, et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 092004
  • 加载中
图(8)
计量
  • 文章访问数:  2123
  • HTML全文浏览量:  370
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-09-21
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回