留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CSNS-II超导椭球腔形变电场平坦度仿真分析

李波 刘华昌 王云 吴小磊 李阿红 瞿培华 樊梦旭 陈强

李波, 刘华昌, 王云, 等. CSNS-II超导椭球腔形变电场平坦度仿真分析[J]. 强激光与粒子束, 2021, 33: 034001. doi: 10.11884/HPLPB202133.200259
引用本文: 李波, 刘华昌, 王云, 等. CSNS-II超导椭球腔形变电场平坦度仿真分析[J]. 强激光与粒子束, 2021, 33: 034001. doi: 10.11884/HPLPB202133.200259
Li Bo, Liu Huachang, Wang Yun, et al. Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac[J]. High Power Laser and Particle Beams, 2021, 33: 034001. doi: 10.11884/HPLPB202133.200259
Citation: Li Bo, Liu Huachang, Wang Yun, et al. Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac[J]. High Power Laser and Particle Beams, 2021, 33: 034001. doi: 10.11884/HPLPB202133.200259

CSNS-II超导椭球腔形变电场平坦度仿真分析

doi: 10.11884/HPLPB202133.200259
基金项目: 广东省基础与应用基础研究基金粤莞联合基金项目(2019B1515120012)
详细信息
    作者简介:

    李 波(1986—),男,硕士,从事粒子加速器加速结构研究;libo0910@ihep.ac.cn

  • 中图分类号: TL53

Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac

  • 摘要: 超导椭球腔是一种通过冲压零件和电子束焊接而成型的薄壁结构,在加工过程中存在不可避免的形变,如单元倾斜、偏轴,单元长度偏差,从而影响椭球腔的轴向电场平坦度,进而降低椭球腔的运行电场梯度。因此,在椭球腔加工成型后要进行预调谐处理。椭球腔预调谐是通过对椭球腔整形,包括倾斜和偏轴矫正,单元长度矫正,以达到提高轴向电场平坦度的目的。采用COMSOL多物理场耦合软件对CSNS-II(China Spallation Neutron Source Phase II)超导椭球腔可能存在的形变进行了仿真计算,研究了各单元形变量对电场平坦度的影响,分析了腔体调谐位移量对电场平坦度的影响,为椭球腔预调谐提供数据参考,也为预调谐机的设计研制提供指导。另外,确定了椭球腔机械形变的要求,确保椭球腔机械加工质量满足CSNS-II升级的实际工程需求。
  • 图  1  椭球腔形变示意图。(a)单元倾斜;(b)单元偏轴;(c)单元长度偏差

    Figure  1.  Deformation diagram of elliptical cavity: (a) cell tilt; (b) cell off-axis; (c) cell extrusion or stretching

    图  2  椭球腔电场测量“拉线”系统

    Figure  2.  Electric field measurement “stay wire” system of elliptical cavity

    图  3  椭球腔预调谐整形结构模型简图

    Figure  3.  Pre-tuning reshaping structure model diagram of elliptical cavity

    图  4  不同倾斜量下单元峰值电场强度分布

    Figure  4.  Distribution of peak electric field at axis under different tilt values

    图  5  不同偏轴量下单元峰值电场强度分布

    Figure  5.  Distribution of peak electric field at axis under different off-axis values

    图  6  不同单元长度偏差下单元峰值电场强度分布

    Figure  6.  Distribution of peak electric field at axis under different cell length deviation values

    图  7  椭球腔2 mm调谐位移形变

    Figure  7.  Deformation of elliptical cavity caused by 2 mm tuning displacement

    图  8  不同调谐量下单元峰值电场强度分布

    Figure  8.  Distribution of peak electric field at axis under different tuning values

    表  1  椭球腔机械加工形变要求

    Table  1.   Deformation requirements in machining elliptical cavity

    tilt/mmoff axis/mmextrusion or stretching/mm
    end cell110.06
    sub-end cell110.06
    middle cell210.06
    pre-tuning function×
    下载: 导出CSV
  • [1] 郑洪娟. ILC/CEPC超导加速系统设计及关键技术研究[D]. 北京: 中国科学院高能物理研究所, 2016: 30-38.

    Zheng Hongjuan. Superconducting radio frequency system design and key technology research for ILC/CEPC[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2016: 30-38
    [2] Furuya T. Development of superconducting RF technology[J]. Reviews of Accelerator Science and Technology, 2008(1): 211-235.
    [3] Wang Sheng, Fang Shouxian, Fu Shinian, et al. Introduction to the over all physics design of CSNS accelerators[J]. Chinese Physics C, 2009, 33(s2): 1-3. doi: 10.1088/1674-1137/33/S2/001
    [4] Wei Jie, Fu Shinian, Tang Jingyu, et al. China spallation neutron source—An overview of application prospects[J]. Chinese Physics C, 2009, 33(11): 1033-1042. doi: 10.1088/1674-1137/33/11/021
    [5] 李波, 刘华昌, 王云, 等. CSNS-II超导椭球腔失谐研究[J]. 原子核物理评论, 2020, 37(2):186-190. (Li Bo, Liu Huachang, Wang Yun, et al. Detuning analysis of the superconducting elliptical cavity for CSNS-II linac[J]. Nuclear Physics Review, 2020, 37(2): 186-190 doi: 10.11804/NuclPhysRev.37.2020013
    [6] 刘亚萍. BEPC II 500 MHz 铌腔的研制[D]. 北京: 中国科学院高能物理研究所, 2011: 42-77.

    Liu Yaping. Study of BEPC II 500 MHz niobium cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2011: 42-77
    [7] Chiaveri E, Lengeler H. Welding of niobium cavities at CERN[C]//Proceedings of SRF Workshop. 1984: 611-625.
    [8] 贺斐思. 面向加速器前沿的几种射频超导加速腔的研发与测试[D]. 北京: 北京大学, 2013: 37-55.

    He Feisi. R&D on superconducting cavities for the next generation SRF accelerators[D]. Beijing: Peking University, 2013: 37-55
    [9] 唐正博. 超导腔的预调谐技术研究[D]. 上海: 中国科学院上海应用物理研究所, 2014: 57-66.

    Tang Zhengbo. Study on the pre-tuning technology of the superconducting cavity[D]. Shanghai: Institute of Applied Physics, Chinese Academy of Sciences, 2014: 57-66
    [10] COMSOL study center[EB/OL]. http://cn.comsol.com/learning-center.
    [11] 徐江峰, 金永兴, 邬良能, 等. 理想导体金属谐振腔电磁场微扰理论研究[J]. 微波学报, 2004, 20(1):26-29. (Xu Jiangfeng, Jin Yongxing, Wu Lingneng, et al. A new perturbation theory of electromagnetic fields in metal cavity[J]. Journal of Microwaves, 2004, 20(1): 26-29 doi: 10.3969/j.issn.1005-6122.2004.01.007
    [12] 宋翔翔, 郭之虞, 朱昆, 等. RFQ加速器腔体电场分布的冷模测量[J]. 北京大学学报(自然科学版), 2006, 42(3):339-342. (Song Xiangxiang, Guo Zhiyu, Zhu Kun, et al. Measurement of the field distribution in a cold model of RFQ resonant cavity[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(3): 339-342
    [13] Yin Xuejun, Li Ahong, Xiao Yongchuan, et al. Preliminary study on the RF tuning of CSNS DTL[J]. Chinese Physics C, 2014, 38: 027002. doi: 10.1088/1674-1137/38/2/027002
    [14] 杨峻. 1500 MHz 5-cell超导腔的仿真及优化[D]. 上海: 中国科学院上海应用物理研究所, 2015: 17-28.

    Yang Jun. Simulation of a 1500 MHz 5-cell superconducting cavity[D]. Shanghai: Institute of Applied Physics, Chinese Academy of Sciences, 2015: 17-28
    [15] 米正辉. 超导腔调谐器设计研究[D]. 北京: 中国科学院高能物理研究所, 2015: 29-32.

    Mi Zhenghui. Design and research of tuner for superconducting cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2015: 29-32
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  189
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-12-01
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回