留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机数据链电磁干扰机理和防护研究

赵敏 许彤 程二威 周星 孙亮 陈亚洲

赵敏, 许彤, 程二威, 等. 无人机数据链电磁干扰机理和防护研究[J]. 强激光与粒子束, 2021, 33: 033005. doi: 10.11884/HPLPB202133.200263
引用本文: 赵敏, 许彤, 程二威, 等. 无人机数据链电磁干扰机理和防护研究[J]. 强激光与粒子束, 2021, 33: 033005. doi: 10.11884/HPLPB202133.200263
Zhao Min, Xu Tong, Cheng Erwei, et al. Mechanism and protection on the data link of UAV exposed to electromagnetic interference[J]. High Power Laser and Particle Beams, 2021, 33: 033005. doi: 10.11884/HPLPB202133.200263
Citation: Zhao Min, Xu Tong, Cheng Erwei, et al. Mechanism and protection on the data link of UAV exposed to electromagnetic interference[J]. High Power Laser and Particle Beams, 2021, 33: 033005. doi: 10.11884/HPLPB202133.200263

无人机数据链电磁干扰机理和防护研究

doi: 10.11884/HPLPB202133.200263
基金项目: 装备预先研究项目(41409010501)
详细信息
    作者简介:

    赵 敏(1985—),女,博士研究生,从事电磁环境效应与评估技术研究;zhao_min_2012@126.com

    通讯作者:

    陈亚洲(1975—),男,博士,教授,从事装备电磁环境效应与防护研究;chen_yazhou@sina.com

  • 中图分类号: TN97

Mechanism and protection on the data link of UAV exposed to electromagnetic interference

  • 摘要: 针对无人机在飞行过程中其数据链系统容易受到外界电磁干扰而导致链路中断的问题,以某型无人机数据链系统为研究对象,提出了一种基于前门耦合的电磁敏感度注入效应试验方法。基于该方法开展了某型无人机数据链系统电磁敏感度效应试验,得到了该数据链系统的敏感度阈值曲线,确定了其电磁敏感度阈值,分析了机载数据链接收机射频前端的工作原理和电磁干扰作用下接收机的信号传输过程,揭示了组合频率干扰和带外饱和干扰对无人机机载数据链的作用机理,最后进行了试验验证。在实验研究的基础上,从电磁兼容设计层面和自适应控制策略方面分别有针对性地提出了相应的防护方法。
  • 图  1  机载数据链设备的工作原理框图

    Figure  1.  Working principle block diagram of a UAV’s datalink device

    图  2  接收机电路原理图

    Figure  2.  The circuit schematic of the receiver

    图  3  不同飞行距离下的无人机数据链上行工作信号强度曲线

    Figure  3.  The curve of operation signal strength of UAV’s data link under different flight distance

    图  4  注入信号功率与场强对照试验配置图

    Figure  4.  The comparison test configuration between injection signal power and field strength

    图  5  不同极化方式下最大注入信号功率与频率的变化关系曲线

    Figure  5.  The relationship between the maximum injection signal power and frequency in the vertical and horizontal polarization mode

    图  6  无人机数据链的电磁敏感度注入效应试验配置图

    Figure  6.  The test configuration of electromagnetic sensitivity injection method for the data link of UAV

    图  7  200 V/m辐照场强对应的功率值和数据链敏感度阈值的对比曲线

    Figure  7.  The contrast curve of signal power corresponding to 200 V/m radiation field and sensitivity threshold of the data link

    图  8  不同工作信号强度下的敏感度阈值曲线

    Figure  8.  Sensitivity threshold curves under different operation signal strength

    图  9  干扰信号作用于接收机的信号传输和处理过程示意图

    Figure  9.  Schematic diagram of signal transmission and processing of interfering signal on the receiver

    图  10  中频输出波形

    Figure  10.  Output waveform of intermediate frequency

  • [1] Idries A, Mohamed N, Jawhar I, et al. Challenges of developing UAV applications: a project management view[C]//Proceedings of 2015 International Conference on Industrial Engineering and Operations Management. Dubai, United Arab Emirates: IEEE, 2015: 1-10.
    [2] Birk A, Wiggerich B, Bülow H, et al. Safety, security, and rescue missions with an unmanned aerial vehicle (UAV): Aerial mosaicking and autonomous flight at the 2009 European Land Robots Trials (ELROB) and the 2010 Response Robot Evaluation Exercises (RREE)[J]. Journal of Intelligent & Robotic Systems, 2011, 64(1): 57-76.
    [3] 陈亚洲. 无人机装备电磁环境效应与作用机理[M]. 北京: 国防工业出版社, 2017.

    Chen Yazhou. Electromagnetic environment effects and mechanism for UAV equipments[M]. Beijing: National Defense Industry Press, 2017
    [4] Gao Wanfeng, Zhang Xiaoyan. Research on the protection method for UAV data link under complex electromagnetic environment[J]. Journal of Physics: Conference Series, 2018, 1074: 012130. doi: 10.1088/1742-6596/1074/1/012130
    [5] Dixon J, Rajamani V, Bunting C. Performance test of unmanned aerial systems communication links in a severe multipath environment[C]//Proceedings of 2016 IEEE International Symposium on Electromagnetic Compatibility. Ottawa, Canada: IEEE, 2016: 862-867.
    [6] 杜宝舟, 陈亚洲, 程二威, 等. 某型无人机数据链连续波电磁辐照效应试验分析[J]. 微波学报, 2018, 34(2):86-91, 96. (Du Baozhou, Chen Yazhou, Cheng Erwei, et al. Experiment analysis of continuous wave electromagnetic irradiation effect for a certain type of UAV data link[J]. Journal of Microwaves, 2018, 34(2): 86-91, 96
    [7] 张冬晓, 陈亚洲, 程二威, 等. 无人机信息链路电磁干扰效应规律研究[J]. 北京理工大学学报, 2019, 39(7):756-762. (Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Effects of electromagnetic interference (EMI) on information link of UAV[J]. Transactions of Beijing Institute of Technology, 2019, 39(7): 756-762
    [8] 杜宝舟, 张冬晓, 程二威. 超宽带电磁脉冲对无人机辐照耦合仿真研究[J]. 计算机仿真, 2018, 35(4):29-32, 37. (Du Baozhou, Zhang Dongxiao, Cheng Erwei. Simulation study on irradiation coupling of UWB electromagnetic pulse to UAV[J]. Computer Simulation, 2018, 35(4): 29-32, 37 doi: 10.3969/j.issn.1006-9348.2018.04.006
    [9] 张冬晓, 陈亚洲, 程二威, 等. 用于无人机信息链路电磁干扰预测的动态电磁敏感度测试研究[J]. 高电压技术, 2019, 45(2):665-672. (Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Research on dynamic electromagnetic susceptibility for electromagnetic interference prediction of UAV information link[J]. High Voltage Engineering, 2019, 45(2): 665-672
    [10] 魏光辉, 卢新福, 潘晓东. 强场电磁辐射效应测试方法研究进展与发展趋势[J]. 高电压技术, 2016, 42(5):1347-1355. (Wei Guanghui, Lu Xinfu, Pan Xiaodong. Recent progress and development in test methods for high intensity electromagnetic field radiation effect[J]. High Voltage Engineering, 2016, 42(5): 1347-1355
    [11] 卢新福, 魏光辉, 潘晓东, 等. 端口非线性条件下双端差模注入法可行性研究[J]. 高电压技术, 2015, 41(12):4213-4219. (Lu Xinfu, Wei Guanghui, Pan Xiaodong, et al. Study on feasibility of double differential mode current injection method under condition of terminal nonlinearity[J]. High Voltage Engineering, 2015, 41(12): 4213-4219
    [12] Lu Xinfu, Wei Guanghui, Pan Xiaodong, et al. A pulsed differential-mode current injection method for electromagnetic pulse field susceptibility assessment of antenna systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1435-1446. doi: 10.1109/TEMC.2015.2453199
    [13] 杜宝舟, 陈亚洲, 高万峰, 等. 基于注入法的某型无人机数据链电磁效应研究[J]. 高电压技术, 2018, 44(10):3322-3327. (Du Baozhou, Chen Yazhou, Gao Wanfeng, et al. Research on electromagnetic effect of unmanned aerial vehicle data link based on injection method[J]. High Voltage Engineering, 2018, 44(10): 3322-3327
    [14] Zhang Dongxiao, Cheng Erwei, Wan Haojiang, et al. Prediction of electromagnetic compatibility for dynamic datalink of UAV[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1474-1482. doi: 10.1109/TEMC.2018.2867641
    [15] 焦彦维, 侯德亭, 周东方, 等. 无人机在复杂电磁环境下的效能评估[J]. 强激光与粒子束, 2014, 26:073201. (Jiao Yanwei, Hou Deting, Zhou Dongfang, et al. Efficiency evaluation of unmanned aerial vehicle in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26: 073201 doi: 10.11884/HPLPB201426.073201
    [16] 张薇玮, 丁文锐, 刘春辉. 复杂环境中无人机数据链干扰效果预测方法[J]. 系统工程与电子技术, 2016, 38(4):760-766. (Zhang Weiwei, Ding Wenrui, Liu Chunhui. Prediction of interference effect on UAV data link in complex environment[J]. Systems Engineering and Electronics, 2016, 38(4): 760-766
    [17] Wan F, Duval F, Savatier X, et al. Electromagnetic interference detection method to increase the immunity of a microcontroller-based system in a complex electromagnetic environment[J]. IET Science, Measurement & Technology, 2012, 6(4): 254-260.
    [18] Ranjith J, Munira J. Jammer suppression in spread spectrum communication using novel independent component analysis approach[J]. AEU-International Journal of Electronics and Communications, 2016, 70(8): 998-1005. doi: 10.1016/j.aeue.2016.03.016
    [19] Demirkiran I, Weiner D D, Drozd A, et al. Knowledge-based approach to interference mitigation for EMC of transceivers on unmanned aircraft[C]//Proceedings of 2010 IEEE International Symposium on Electromagnetic Compatibility. Fort Lauderdale, USA: IEEE, 2010: 425-430.
    [20] Guo Shuxia, Dong Zhongyao, Hu Zhantao, et al. Simulation of dynamic electromagnetic interference environment for unmanned aerial vehicle data link[J]. China Communications, 2013, 10(7): 19-28. doi: 10.1109/CC.2013.6570796
    [21] Guo Shuxia, Wang Yafeng, Liu Ruibing, et al. Multi-dimensional and complicated electromagnetic interference hardware-in-the-loop simulation method[J]. Journal of Systems Engineering and Electronics, 2015, 26(6): 1142-1148. doi: 10.1109/JSEE.2015.00124
    [22] 徐峰, 官伯然. 差分限幅器在接收机动态范围扩展中的应用[J]. 现代雷达, 2009, 31(2):78-80, 88. (Xu Feng, Guan Boran. Extending dynamic range of receiver with differential limiter[J]. Modern Radar, 2009, 31(2): 78-80, 88 doi: 10.3969/j.issn.1004-7859.2009.02.020
  • 加载中
图(10)
计量
  • 文章访问数:  1721
  • HTML全文浏览量:  382
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 修回日期:  2021-01-18
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回