留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

230 MeV超导回旋加速器磁场调节棒驱动系统研制

李要乾 李明 宋国芳 冀鲁豫 葛涛 贾先禄 吕银龙 蔡红茹 卢晓通 张天爵

杨实, 任书庆, 来定国, 等. 大功率高压恒流充电源研制[J]. 强激光与粒子束, 2015, 27: 095006. doi: 10.11884/HPLPB201527.095006
引用本文: 李要乾, 李明, 宋国芳, 等. 230 MeV超导回旋加速器磁场调节棒驱动系统研制[J]. 强激光与粒子束, 2021, 33: 034005. doi: 10.11884/HPLPB202133.200285
Yang Shi, Ren Shuqing, Lai Dingguo, et al. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27: 095006. doi: 10.11884/HPLPB201527.095006
Citation: Li Yaoqian, Li Ming, Song Guofang, et al. Development of Trim-rod driving system for CYCIAE-230 superconducting cyclotron[J]. High Power Laser and Particle Beams, 2021, 33: 034005. doi: 10.11884/HPLPB202133.200285

230 MeV超导回旋加速器磁场调节棒驱动系统研制

doi: 10.11884/HPLPB202133.200285
基金项目: 国家自然科学基金项目(11475269);国防基础科研项目(JCKY2017201B002)
详细信息
    作者简介:

    李要乾(1987—),男,硕士,工程师,从事加速器电气及控制,加速器运行与调试;liyq0106@163.com

  • 中图分类号: TL542.1

Development of Trim-rod driving system for CYCIAE-230 superconducting cyclotron

  • 摘要: 在230 MeV超导回旋加速器中,磁场调节棒及其驱动系统是束流调试的重要辅助装置。为满足束流对中和束流引出所需的磁场,设计并研制了16套磁场调节棒及其驱动装置。机械执行机构采用美国Thomson公司的精密直线执行器,其重复定位精度为±0.01 mm,位置传感器采用德国Novotechnik公司的直线位移电子尺,其重复精度为0.002 mm。此外,运动控制采用PLC加直线位移传感器负反馈闭环的方案。在实际工况下,系统定位精度达到0.05 mm,重复精度达到±0.02 mm,优于设计要求。此外,对该系统进行了静电放电测试、电快速瞬变脉冲群测试和浪涌抗扰度测试,结果满足医用电气设备电磁兼容标准YY 0505-2012/IEC 6060 1-1-2:2004的要求。该驱动系统的研制,克服了在强电离辐射、高磁场强度、狭小安装空间的特殊环境中达到高定位精度和高重复精度的难点,对优化束流的径向进动、减小加速区域的相干振荡振幅、提高引出区的束流引出效率等具有重要意义。
  • 图  1  CYCIAE-230磁场调节棒位置示意图

    Figure  1.  Positions of trim-rods on CYCIAE-230

    图  2  CYCIAE-230磁场调节棒驱动系统架构图

    Figure  2.  Architecture diagram of trim-rod drive system on CYCIAE-230

    图  3  CYCIAE-230磁场调节棒驱动控制原理图

    Figure  3.  Control principle of trim-rod drive system on CYCIAE-230

    图  4  CYCIAE-230磁场调节棒驱动机械结构示意图

    Figure  4.  Schematic diagram of mechanical structure of trim-rod drive system on CYCIAE-230

    图  5  引出区磁场调节棒的定位精度

    Figure  5.  Positioning accuracy of the trim-rods in extraction region

    图  6  中心区磁场调节棒的定位精度

    Figure  6.  Positioning accuracy of the trim-rods in center region

    图  7  调节磁场调节棒前后磁场变化理论值与测量值

    Figure  7.  Magnetic values variation with trim-rod regulation

    图  8  磁场调节棒的重复定位精度

    Figure  8.  Repeated positioning accuracy of trim-rod

    表  1  CYCIAE-230磁场调节棒驱动系统技术参数

    Table  1.   Parameters of Trim-rod drive system on CYCIAE-230

    parametertechnical indicator
    maximum driving force/N2100
    center stroke/mm±10
    extraction stroke/mm±30
    positioning accuracy/mm0.1
    repeat positioning accuracy/mm0.05
    magnetic shielding effect/Gs<200
    power self-lockingneeded
    limit switchneeded
    下载: 导出CSV
  • [1] Zhang Tianjue, Wang Chuan, Li Ming, et al. Developments for 230 MeV superconducting cyclotrons for proton therapy and proton irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 406: 244-249. doi: 10.1016/j.nimb.2016.11.010
    [2] Zhang Tianjue, Li Ming, Wang Chuan, et al. Investigation and quantitative simulation of beam physics for 230 MeV SC cyclotron under construction at CIAE[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 468: 8-13. doi: 10.1016/j.nimb.2020.02.008
    [3] Zhang Lige, Fan Kj, Hu Shengwei, et al. Design of the trim coil for the superconducting cyclotron extraction[C]//IPAC2018.2018.
    [4] Kim J W, Goto A, Yano Y. Trim coil system design of a superconducting ring cyclotron[J]. Review of Scientific Instruments, 1999, 70(5): 2293-2299. doi: 10.1063/1.1149755
    [5] Stephani T, Röcken H, Behrens U, et al. Automated operation and optimization of the Varian 250 MeV superconducting compact proton cyclotron[C]//Proceedings of Cyclotrons. 2010.
    [6] Bigham C B. Magnetic trim rods for superconducting cyclotrons[J]. Nuclear Instruments and Methods, 1975, 131(2): 223-228. doi: 10.1016/0029-554X(75)90323-7
    [7] Heighway E A. Movable steel trim rods and the orbit dynamics of the chalk river superconducting heavy ion cyclotron[J]. IEEE Transactions on Nuclear Science, 1977, 24(3): 1479-1481. doi: 10.1109/TNS.1977.4328984
    [8] Zhang Dongsheng, Li Ming, Wang Chuan, et al. Physical design of the extraction trim-rod in a 230 MeV superconducting cyclotron[C]//Proceedings of cyclotron. 2016.
    [9] 温立鹏, 安世忠, 曹磊, 等. 100 MeV强流质子回旋加速器剥离靶驱动控制系统研制[J]. 原子能科学技术, 2018, 52(12):2296-2301. (Wen Lipeng, An Shizhong, Cao Lei, et al. Development of driving control system of stripping target for CYCIAE-100[J]. Atomic Energy Science and Technology, 2018, 52(12): 2296-2301 doi: 10.7538/yzk.2018.youxian.0355
    [10] 张祎王, 曹磊, 侯世刚, 等. CYCIAE-100回旋加速器质子照相束流线控制系统的研制[J]. 原子能科学技术, 2018, 52(1):156-160. (Zhang Yiwang, Cao Lei, Hou Shigang, et al. Design and implementation of control system for CYCIAE-100 cyclotron beam line of proton radiography[J]. Atomic Energy Science and Technology, 2018, 52(1): 156-160
  • 期刊类型引用(7)

    1. 甘延青,罗光耀,李飞,张北镇,李春霞,王淦平,金晓,宋法伦. 大功率重复频率高电压脉冲充电电源研制. 强激光与粒子束. 2025(03): 22-29 . 本站查看
    2. 江进波,徐林,罗正,杨文,唐铭,姚延东,陈锐. 基于LC串联谐振的高压恒流充电电源设计. 强激光与粒子束. 2024(05): 46-53 . 本站查看
    3. 冯传均,伍友成,何泱,戴文峰,付佳斌,刘宏伟. 正负双极性重复频率充电电源研制. 强激光与粒子束. 2023(03): 121-127 . 本站查看
    4. 冯传均,何泱,戴文峰,伍友成,付佳斌,王敏华. 串联谐振高压电容充电电源设计及分析. 强激光与粒子束. 2019(05): 55-60 . 本站查看
    5. 蔡政平,李伟松. 太赫兹器件测试用高重复频率高压脉冲电源. 强激光与粒子束. 2018(02): 62-67 . 本站查看
    6. 张彬,杨欣欣,周赛,蔡晨,赵辉,韩吉庆,潘忠泉. 波长校准用低压石英汞灯驱动电源的研制. 化学分析计量. 2017(02): 106-109 . 百度学术
    7. 缪亚运,谷鸣,陈志豪,童金. 质子治疗装置脉冲电源研制. 核技术. 2016(04): 32-36 . 百度学术

    其他类型引用(9)

  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1511
  • HTML全文浏览量:  307
  • PDF下载量:  60
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-10-15
  • 修回日期:  2020-11-19
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回