留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SF6中氧化铝环氧复合材料的纳秒脉冲闪络特性

孙楚昱 王海洋 谢霖燊 迟晓红

孙楚昱, 王海洋, 谢霖燊, 等. SF6中氧化铝环氧复合材料的纳秒脉冲闪络特性[J]. 强激光与粒子束, 2021, 33: 055002. doi: 10.11884/HPLPB202133.200289
引用本文: 孙楚昱, 王海洋, 谢霖燊, 等. SF6中氧化铝环氧复合材料的纳秒脉冲闪络特性[J]. 强激光与粒子束, 2021, 33: 055002. doi: 10.11884/HPLPB202133.200289
Sun Chuyu, Wang Haiyang, Xie Linshen, et al. Flashover characteristics of epoxy/Al2O3 composite under nanosecond rising pulses in SF6 gas[J]. High Power Laser and Particle Beams, 2021, 33: 055002. doi: 10.11884/HPLPB202133.200289
Citation: Sun Chuyu, Wang Haiyang, Xie Linshen, et al. Flashover characteristics of epoxy/Al2O3 composite under nanosecond rising pulses in SF6 gas[J]. High Power Laser and Particle Beams, 2021, 33: 055002. doi: 10.11884/HPLPB202133.200289

SF6中氧化铝环氧复合材料的纳秒脉冲闪络特性

doi: 10.11884/HPLPB202133.200289
基金项目: 强脉冲辐射环境模拟与效应国家重点实验室基金项目(SKLIPR1901Z)
详细信息
    作者简介:

    孙楚昱(1992—),女,硕士,助理研究员,从事脉冲功率及高电压绝缘研究

  • 中图分类号: TM85

Flashover characteristics of epoxy/Al2O3 composite under nanosecond rising pulses in SF6 gas

  • 摘要: 氧化铝掺杂环氧树脂复合材料在电力绝缘设备中应用广泛,然而人们对其在纳秒脉冲下的绝缘性能研究较少,这限制了它在指导脉冲功率装置中的应用。为探究其在纳秒脉冲下的沿面绝缘性能,对氧化铝掺杂环氧树脂复合材料在前沿数十ns快脉冲电压下的闪络特性进行了研究,结果显示,其闪络电场较纯环氧有较大提高,闪络电压符合韦伯分布。实验表明,闪络电压随电压上升率的增加而显著增加,从5.8 kV/ns时的108 kV上升到20.5 kV/ns时的226 kV,增幅超过1倍。闪络时延随电压上升率的上升呈现“先快速下降、后趋于平缓”的趋势。在试样闪络通道表面观测到明显的碳化现象,说明实验中的闪络放电对复合材料有破坏性影响。
  • 图  1  实验系统整体示意图

    Figure  1.  Schematic of experiment setup

    图  2  典型未闪络波形及不同电压上升率的闪络波形

    Figure  2.  Typical unflashover voltage waveform and flashover waveforms with different pulse steepness

    图  3  韦伯分布图

    Figure  3.  Weibull probability plot

    图  4  闪络电压和闪络时延与电压上升率的关系

    Figure  4.  Relationship of flashover voltage, time delay and pulse steepness

    图  5  试样照片及闪络区域SEM图像

    Figure  5.  Pictures of samples and SEM image of surface after flashover

    表  1  累积概率函数

    Table  1.   Accumulative frequency

    flashover voltage/kVflashover amountaccumulated amountFV
    81−85110.0133
    86−90120.0267
    91−95240.0533
    96−10011150.2000
    101−10524390.5200
    106−11014530.7067
    111−11510630.8400
    116−1208710.9467
    121−1252730.9733
    126−1301740.9867
    131−1351751
    下载: 导出CSV

    表  2  部分纯环氧材料闪络场强对比

    Table  2.   Comparison with flashover electric field of pure epoxy

    sourcematerialelectrodeflashover electric field/(kV·cm−1pulse rise time/(ns)SF6 pressure/(MPa)
    this paperepoxy/Al2O3 compositefinger224520.2
    ref.[19]epoxy resinfinger1131000.2
    ref.[20]epoxy resinfinger55200.2
    ref.[21]epoxy resinfinger43not mentioned0.2
    下载: 导出CSV
  • [1] 王科. 氧化铝纳米颗粒改性TDE-85型环氧树脂复合材料的制备和性能研究[D]. 呼和浩特: 内蒙古工业大学, 2007: 37-46.

    Wang Ke. Study on preparation and properties of nano-Al2O3 particle reinforced epoxy resin composites. Hohhot: Inner Mongolia University of Technology, 2007: 37-46
    [2] 吴聪, 都怡佩, 沈意斌, 等. 氧化铝/环氧树脂复合材料的制备及散热性能研究[J]. 化工新型材料, 2018, 46(8):63-66. (Wu Cong, Du Yipei, Shen Yibin, et al. Preparation and thermal property of alumina/epoxy composite[J]. New Chemical Materials, 2018, 46(8): 63-66
    [3] 胡永. 氧化铝陶瓷及氧化铝/环氧树脂复合材料的制备与性能研究[D]. 南昌: 南昌大学, 2016: 41-49.

    Hu Yong. Preparation and properties of alumina ceramics and alumina/epoxy composites[D]. NanChang: Nanchang University, 2016: 41-49
    [4] Kochetov R, Andritsch T, Morshuis P H F. Thermal and electrical behavior of epoxy-based microcomposites filled with Al2O3 and SiO2 particles[C]//Proc of ISEI. 2010.
    [5] Kozako M, Okazaki Y, Hikita M. Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity[C]//Proc of ICSD. 2010.
    [6] 阮浩鸥, 余永松, 张建兴, 等. 纳米Al2O3对环氧树脂复合材料沿面闪络电压的影响[J]. 绝缘材料, 2019, 52(2):29-34. (Ruan Haoou, Yu Yongsong, Zhang Jianxing, et al. Effect of nano-Al2O3 on surface flashover voltage of epoxy resin composites[J]. Insulating Materials, 2019, 52(2): 29-34
    [7] 孔令龙, 褚鹏飞, 张晖, 等. 微米氧化铝表面修饰对电工级环氧树脂电绝缘性能的影响[J]. 绝缘材料, 2018, 51(6):35-41. (Kong Linglong, Chu Pengfei, Zhang Hui, et al. Effect of surface modification for micro-Al2O3 on insulating properties of epoxy resin of electrical grade[J]. Insulating Materials, 2018, 51(6): 35-41
    [8] 张治民. 环氧树脂纳米复合材料电学特性和力学特性[D]. 太原: 太原理工大学, 2017: 30-45.

    Zhang Zhimin. Study on the electrochemical characteristics and mechanical properties of epoxy resin nanocomposites. Taiyuan: Taiyuan University of Technology, 2017: 30-45
    [9] 李武峰, 李鹏, 李金忠, 等. SF6气体中氧化铝掺杂环氧树脂直流沿面闪络中的虫孔效应[J]. 高电压技术, 2017, 43(8):2754-2759. (Li Wufeng, Li Peng, Li Jinzhong, et al. Wormholes effect in DC flashover process of alumina filled epoxy resin surfaces in SF6[J]. High Voltage Engineering, 2017, 43(8): 2754-2759
    [10] 李鹏, 李金忠, 张乔根, 等. 氧化铝填充环氧绝缘子SF6气体中直流负极性闪络特性[J]. 中国电机工程学报, 2014, 34(36):6523-6529. (Li Peng, Li Jinzhong, Zhang Qiaogen, et al. Negative DC flashover characteristics of alumina filled epoxy resin insulators in SF6[J]. Proceedings of the CSEE, 2014, 34(36): 6523-6529
    [11] Khan M Z, Waleed A, Khan A, et al. Significantly improved surface flashover characteristics of epoxy resin/Al2O3 nanocomposites in air, vacuum and SF6 by gas-phase fluorination[J]. Journal of Electronic Materials, 2020, 49(5): 3400-3408. doi: 10.1007/s11664-020-08001-4
    [12] Serkan M, Kirkici H, Koppisetty K. Surface flashover characteristics of nano-composite dielectric materials under DC and pulsed signals in partial vacuum[C]//Proc of PMS. 2006: 90-92.
    [13] Kirkici H, Serkan M, Koppisetty K. Nano/micro dielectric surface flashover in partial vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 790-795. doi: 10.1109/TDEI.2007.4286508
    [14] IEEE 930-2004. Guide for the statistical analysis of electrical insulation breakdown data[S].
    [15] Wilson, MP, Given M J, Timoshkin I V, et al. Impulse-driven surface breakdown data: A weibull statistical analysis[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2449-2455. doi: 10.1109/TPS.2011.2181172
    [16] Xie Qing, Hu Zhiliang, Wang Tao, et al. Experimental study on surface flashover of PMMA and SR driven by negative DC voltage at atmospheric pressure[C]//Proc of ICHVE. 2016.
    [17] Li Guangjie, Wang Jue, Yan Ping, et al. Experimental study on statistical characteristics of surface flashover under nanosecond pulse in transformer oil[C]//Proc of the 27th International Power Modulator Symposium and 2006 High Voltage Workshop. 2006: 97-99.
    [18] 孙旭, 张喜波, 刘胜, 等. 绝缘材料高压气体沿面闪络特性研究[J]. 现代应用物理, 2018, 9:010404. (Sun Xu, Zhang Xibo, Liu Sheng, et al. Surface flashover properties of insulators in high pressure gas[J]. Modern Applied Physics, 2018, 9: 010404
    [19] 谢庆, 刘熊, 吴高林, 等. SF6中环氧树脂纳秒脉冲沿面闪络实验研究[J]. 中国电机工程学报, 2016, 36(24):6727-6735. (Xie Qing, Liu Xiong, Wu Gaolin, et al. Experiment study of surface flashover on epoxy resin discharged by nanosecond pulses in SF6[J]. Proceedings of the CSEE, 2016, 36(24): 6727-6735
    [20] 陈玉, 成永红, 阴玮, 等. 环氧及其复合材料气固界面快脉冲闪络特性[J]. 西安交通大学学报, 2008, 42(6):703-707. (Chen Yu, Cheng Yonghong, Yin Wei, et al. Flashover property of pure epoxy and composites along the gas-solid interface under fast pulse[J]. Journal of Xi’an Jiaotong University, 2008, 42(6): 703-707
    [21] Huang Yin, Min Daomin, Li Shengtao, et al. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation[J]. Applied Surface Science, 2017, 406: 39-45. doi: 10.1016/j.apsusc.2017.02.093
    [22] 孙楚昱, 张国伟, 王海洋, 等. 纳秒脉冲下SF6中的沿面闪络特性[J]. 绝缘材料, 2017, 50(4):51-55. (Sun Chuyu, Zhang Guowei, Wang Haiyang, et al. Surface flashover characteristics in SF6 gas under nanosecond pulse voltage[J]. Insulating Materials, 2017, 50(4): 51-55
    [23] Sun Chuyu, Zhou Hui, Chen Weiqing, et al. Characteristics of nanosecond pulse dielectric surface flashover in high pressure SF6[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 24(4): 1387-1392.
    [24] Stephens J, Beeson S, Dickens J, et al. Charged electret deposition for the manipulation of high power microwave flashover delay times[J]. Physics of Plasmas, 2012, 19: 112111. doi: 10.1063/1.4767649
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  379
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2021-03-17
  • 网络出版日期:  2021-04-12
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回