留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相放电等离子体特性与激波特性的数值分析

余庆 张辉 马丹妮

余庆, 张辉, 马丹妮. 液相放电等离子体特性与激波特性的数值分析[J]. 强激光与粒子束, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321
引用本文: 余庆, 张辉, 马丹妮. 液相放电等离子体特性与激波特性的数值分析[J]. 强激光与粒子束, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321
Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321
Citation: Yu Qing, Zhang Hui, Ma Danni. Numerical analysis of plasma and shock wave characteristics of the discharge in liquid[J]. High Power Laser and Particle Beams, 2021, 33: 075001. doi: 10.11884/HPLPB202133.200321

液相放电等离子体特性与激波特性的数值分析

doi: 10.11884/HPLPB202133.200321
基金项目: 国家自然科学基金项目(5177040245)
详细信息
    作者简介:

    余 庆(1995—),男,博士研究生,从事复杂结构井优化设计与控制研究

    通讯作者:

    张 辉(1971—),女,博导,教授,从事钻井破岩提速研究

  • 中图分类号: TM8

Numerical analysis of plasma and shock wave characteristics of the discharge in liquid

  • 摘要: 以能量平衡方程为基础,采用不同的电导率唯象模型描述了液相放电等离子体圆柱形通道特性,得到了通道内半径、温度、电阻、电流和耗散能量随时间的变化关系,还给出了距离放电间隙中心一定距离处的冲击波压力变化,并与前人利用等离子体通道球状模型计算得到的结果进行了比较。结果表明:把等离子体通道看成球状和看成圆柱状在描述通道压力和通道半径时差异显著,而在描述其他物理特性时差别不大;三种电导率模型在描述等离子体通道物理特性时,变化趋势大体相同,而在描述激波特性时,电导率模型σ2更符合实际;通过对比电学参数与压力参数的变化,就可以在实验中根据实验数据以及具体的研究问题进行模型的适用性选择。
  • 图  1  等离子体通道圆柱模型

    Figure  1.  Cylindrical expansion model of plasma channel

    图  2  液相放电等离子体实验回路图

    Figure  2.  Schematic diagram of the experimental device by electrical discharge plasma in water

    图  3  等效放电回路图

    Figure  3.  Schematic of equivalent circuit

    图  4  不同模型下等离子体通道电学特性的仿真结果

    Figure  4.  Simulation results of electrical characteristic of plasma channel under different model

    图  5  等离子体通道半径的变化趋势

    Figure  5.  Variation trend of the diameter of plasma channel

    图  6  等离子体通道电阻的变化趋势

    Figure  6.  Variation trend of the resistance of plasma channel

    图  7  等离子体通道温度的变化趋势

    Figure  7.  variation trend of the temperature of plasma channel

    图  8  等离子体通道内压力和远场压力的仿真结果

    Figure  8.  Simulation results of the pressure of plasma channel and the pressure in the far field

  • [1] 孙冰. 液相放电等离子体及其应用[M]. 北京: 科学出版社, 2013.

    Sun Bing. Discharge plasma in liquid and its application[M]. Beijing: Science Press, 2013
    [2] 张辉, 蔡志翔, 陈安明, 等. 液相放电等离子体破岩室内实验与破岩机理[J]. 石油学报, 2020, 41(5):615-628. (Zhang Hui, Cai Zhixiang, Chen Anming, et al. Experiments and mechanism of rock breaking by the plasma shock wave generated by underwater discharge[J]. Acta Petrolei Sinica, 2020, 41(5): 615-628 doi: 10.7623/syxb202005010
    [3] 刘云龙, 王志刚, 汪桐, 等. 等离子体协同絮凝降解乳化油废水COD的研究[J]. 安徽理工大学学报(自然科学版), 2019, 39(5):64-68. (Liu Yunlong, Wang Zhigang, Wang Tong, et al. Study on COD degradation of emulsified oil wastewater by plasma co-flocculation[J]. Journal of Anhui University of Science and Technology(Natural Science), 2019, 39(5): 64-68
    [4] 陈景秋, 韦春霞, 邓艇, 等. 体外冲击波碎石技术的力学机理的研究[J]. 力学进展, 2007, 37(4):590-599. (Cheng Jingqiu, Wei Chunxia, Deng Ting, et al. Studies on mechanical mechanism about stone comminution and tissue trauma in extracorporeal shock wave lithotripsy[J]. Advances in Mechanics, 2007, 37(4): 590-599
    [5] 左公宁. 水中脉冲电晕放电的某些特性[J]. 高电压技术, 2003, 29(8):37-38. (Zuo Gongning. Some properties of the impulse corona discharge in water[J]. High Voltage Engineering, 2003, 29(8): 37-38 doi: 10.3969/j.issn.1003-6520.2003.08.015
    [6] 李宁, 雷开卓, 黄建国, 等. 采用时变电阻的水下高压放电模型[J]. 高电压技术, 2009, 35(12):3060-3064. (Li Ning, Lei Kaizhuo, Huang Jianguo, et al. Model of underwater high-voltage discharge using time-varying resistance[J]. High Voltage Engineering, 2009, 35(12): 3060-3064
    [7] Timoshkin I V, Fouracre R A, Given M J, et al. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. doi: 10.1088/0022-3727/39/22/011
    [8] 李培芳, 金方勤. 液中放电冲击波和等离子体参数的计算[J]. 浙江大学学报(自然科学版), 1994(1):27-35. (Li Peifang, Jin Fangqin. Calculations of shock wave and plasma parameters of the discharge in liquid[J]. Journal of Zhejiang University(Natural Science), 1994(1): 27-35
    [9] 蒋杰灵, 兰生, 杨嘉祥. 水中脉冲放电等离子体特性数值解析[J]. 哈尔滨理工大学学报, 2008(5):107-111. (Jiang Jieling, Lan Sheng, Yang Jiaxiang. Numerical analysis of the plasma characteristics of pulsed discharge in water[J]. Journal of Harbin University of Science and Technology, 2008(5): 107-111 doi: 10.3969/j.issn.1007-2683.2008.05.029
    [10] Cook J A, Gleeson A M, Roberts R M, et al. A spark-generated bubble model with semi-empirical mass transport[J]. The Journal of the Acoustical Society of America, 1997, 101(4): 1908-1920. doi: 10.1121/1.418236
    [11] Roberts R M, Cook J A, Rogers R L, et al. The energy partition of underwater sparks[J]. The Journal of the Acoustical Society of America, 1996, 99(6): 3465-3475. doi: 10.1121/1.414993
    [12] Eubank P T, Patel M R, Barrufet M A, et al. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model[J]. Journal of Applied Physics, 1993, 73(11): 7900-7909. doi: 10.1063/1.353942
    [13] Liu S W, Liu Y, Ren Y J, et al. Influence of plasma channel impedance model on electrohydraulic shockwave simulation[J]. Physics of Plasmas, 2019, 26: 023522. doi: 10.1063/1.5064847
    [14] Fedorov V M. High power nanosecond discharge channel in water[M]. New York: Megagauss Fields and Pulsed Power Systems. 1990.
    [15] Ziman J M. Principles of the theory of solids[M]. Cambridge: Cambridge University Press, 1972.
    [16] Warne L K, Jorgenson R E, Lehr J M. Resistance of a water spark[R]. SAND2005-6994, 2005.
    [17] Liu S, Liu Y, Ren Y, et al. Characteristic analysis of plasma channel and shock wave in electrohydraulic pulsed discharge[J]. Physics of Plasmas, 2019, 26: 93509. doi: 10.1063/1.5092362
    [18] Spitzer L J Jr. Physics of fully ionized gases[J]. New York: John Wiley & Sons, 1962: 136-143.
    [19] Kratel A W H. Pulsed power discharges in water[D]. Pasadena: California Institute of Technology. 1996.
    [20] 王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科学技术大学, 2012.

    Wang Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha: National University of Defense Technology, 2012
    [21] Braginskii S I. Theory of the development of a spark channel[J]. Soviet Phys JETP, 1958, 34 (6): 1068-1074.
    [22] Touya G, Reess T, Pecastaing L, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves[J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5236-5244. doi: 10.1088/0022-3727/39/24/021
  • 加载中
图(8)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  352
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回