Simulation of magnetically driven quasi-isentropic compression experiments with windows
-
摘要: 在二维磁驱动数值模拟程序MDSC2中增加了LiF材料的材料参数和功能模块,使MDSC2程序具有了求解带窗口磁驱动准等熵压缩实验的能力。采用MDSC2程序,对大电流脉冲功率装置上的exp-3-window、exp-6-window带窗口磁驱动准等熵压缩实验进行了模拟。数值模拟结果表明,二维磁驱动数值模拟程序MDSC2能正确模拟带窗口磁驱动准等熵压缩实验exp-3-window和exp-6-window的全过程,模拟的飞片/窗口界面速度在飞片/窗口界面速度的上升阶段、峰值附近和卸载阶段与实验测量基本一致,验证了新程序的计算有效性。MDSC2程序对带窗口磁驱动准等熵压缩实验的正确模拟有助于磁驱动样品物性实验的研究。
-
关键词:
- 磁驱动准等熵压缩实验 /
- 二维磁驱动数值模拟程序 /
- 飞片/窗口界面速度 /
- 磁流体力学 /
- 数值模拟
Abstract: The material parameters and functional modules of LiF are added to the two-dimensional magnetically driven simulation code (MDSC2), which makes MDSC2 code have the ability to simulate the magnetically driven quasi-isentropic compression experiments with windows. Magnetically driven experiments with windows, shots of exp-3-window and exp-6-window, which were carried out in a large pulsed power device, are simulated and analyzed by the MDSC2 code. The simulated flyer plate/window interface velocities agree well with the experimental records by Velocity Interferometry System for Any Reflector (VISAR). The magneto-hydrodynamic code can correctly simulate the magnetically driven experiments with windows, which is helpful to understand the physical mechanism of sample material behaviors in magnetically driven experiments with windows. -
表 1 带窗口磁驱动实验负载参数
Table 1. Load parameters for magnetically driven experiments with windows
No. ${\delta _{{\rm{fa}}}}$/mm ${\delta _{{\rm{wa}}}}$/mm ${\delta _{{\rm{fc}}}}$/mm ${\delta _{{\rm{wc}}}}$/mm ${g_0}$/mm W/mm exp-3-window 1.008 9.532 1.002 9.533 1.20 13 exp-6-window 0.980 8 1.089 8 1.24 11 -
[1] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967 [2] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316 [3] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501 [4] Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505 [5] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209 [6] Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25: 671-694. doi: 10.1016/j.ijplas.2008.12.003 [7] Reisman D B, Toor A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082 [8] Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740 [9] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019 [10] Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. J Appl Phys, 2014, 116: 204903. doi: 10.1063/1.4902863 [11] Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002 [12] 阚明先, 王刚华, 肖波, 等. 磁驱动单侧飞片实验的数值模拟研究[J]. 爆炸与冲击, 2020, 40:033304. (Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Simulation on magnetically-driven one-sided flyer plate experiment[J]. Explosion and shock waves, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103 [13] Deng Jianjun, Xie Weiping, Feng Shuping, et al. Initial performance of the primary test stand[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2580-2583. doi: 10.1109/TPS.2013.2274154 [14] Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM[J]. Matter and Radiation at Extremes, 2016, 1(3): 135-152. doi: 10.1016/j.mre.2016.06.001 [15] 阚明先, 张朝辉, 段书超, 等. “聚龙一号”装置上磁驱动铝飞片实验的数值模拟[J]. 强激光与粒子束, 2015, 27:125001. (Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27: 125001 doi: 10.11884/HPLPB201527.125001 [16] 王贵林, 张朝辉, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28:055010. (Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental masurement of qusai-isentrope for copper on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010 [17] 阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8):2137-2141. (Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137 [18] 阚明先, 王刚华, 张红平, 等. 磁驱动高速飞片模拟中滑移界面处理[J]. 强激光与粒子束, 2015, 27:015002. (Kan Mingxian, Wang Ganghua, Zhang Hongping, et al. Sliding interface processing in simulation on magnetically driving high speed flyer[J]. High Power Laser and Particle Beams, 2015, 27: 015002 doi: 10.11884/HPLPB201527.015002 [19] 阚明先, 王刚华, 肖波, 等. 二维弹塑性磁流体力学数值模拟[J]. 强激光与粒子束, 2018, 30:065002. (Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Two dimensional elasto-plastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30: 065002 doi: 10.11884/HPLPB201830.170306 [20] 阚明先, 段书超, 张朝辉, 等. 二维磁驱动数值模拟程序MDSC2的验证与确认[J]. 强激光与粒子束, 2019, 31:065001. (Kan Mingxian, Duan Shuchao, Zhang Zhaohui, et al. Verification and validation of two dimensional magnetically driven simulation code MDSC2[J]. High Power Laser and Particle Beams, 2019, 31: 065001 [21] 阚明先, 王刚华, 赵海龙, 等. 金属电阻率模型[J]. 爆炸与冲击, 2013, 33(3):282-286. (Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Electrical resistivity model for metals[J]. Explosion and shock waves, 2013, 33(3): 282-286 doi: 10.3969/j.issn.1001-1455.2013.03.010 [22] 阚明先, 段书超, 王刚华, 等. 自由面被烧蚀磁驱动飞片的数值模拟[J]. 强激光与粒子束, 2017, 29:045003. (Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface[J]. High Power Laser and Particle Beams, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482 [23] 阚明先, 杨龙, 段书超, 等. 聚龙一号上磁驱动铝飞片发射实验的数值分析与再设计[J]. 爆炸与冲击, 2017, 37(5):793-798. (Kan Mingxian, Yang Long, Duan Shuchao, et al. Numerical anlaysis and redesign of magnetically driven aluminum flyer plate on PTS accelerator[J]. Explosion and Shock waves, 2017, 37(5): 793-798 doi: 10.11883/1001-1455(2017)05-0793-06 [24] 阚明先, 段书超, 杨龙, 等. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32:085002. (Kan Mingxian, Duan Shuchao, Yanglong, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002