留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变截面超-超引射器启动特性数值研究

王旭 徐旭

王旭, 徐旭. 变截面超-超引射器启动特性数值研究[J]. 强激光与粒子束, 2021, 33: 071006. doi: 10.11884/HPLPB202133.200333
引用本文: 王旭, 徐旭. 变截面超-超引射器启动特性数值研究[J]. 强激光与粒子束, 2021, 33: 071006. doi: 10.11884/HPLPB202133.200333
Wang Xu, Xu Xu. Starting characteristics of variable section supersonic-supersonic ejector[J]. High Power Laser and Particle Beams, 2021, 33: 071006. doi: 10.11884/HPLPB202133.200333
Citation: Wang Xu, Xu Xu. Starting characteristics of variable section supersonic-supersonic ejector[J]. High Power Laser and Particle Beams, 2021, 33: 071006. doi: 10.11884/HPLPB202133.200333

变截面超-超引射器启动特性数值研究

doi: 10.11884/HPLPB202133.200333
基金项目: 国家自然科学基金项目(51776013)
详细信息
    作者简介:

    王 旭(1996—),男,博士生,研究方向为高超声速推进技术

    通讯作者:

    徐 旭(1969—),男,博士,教授,研究领域为高超声速推进技术

  • 中图分类号: V430

Starting characteristics of variable section supersonic-supersonic ejector

  • 摘要: 为研究不同结构参数与来流参数下变截面超-超引射器的启动特性,用于指导超-超引射器设计与工况调试,采用二维雷诺平均Naiver-Stokes方程,数值研究了引射器混合室不同收缩比、一次流和二次流的不同总压比、总温比下超-超引射器的启动规律,并定义了“启动系数”来判别超-超引射流场是否建立。研究结果表明:随着收缩比(范围0.7~0.9)的增加,超-超引射器启动的临界总压比、总温比均先降低后升高,收缩比0.8时,存在最佳总压比5.88,最佳总温比0.21。结构参数一定,超-超引射器随总温比升高启动难度增加。当超-超引射器处于启动状态下,室压不随总温比、总压比变化而变化,引入的启动系数较引射系数可不依赖具体工况而直接判别超-超引射器是否启动。
  • 图  1  超-超引射器结构示意图

    Figure  1.  Schematic of variable section supersonic-supersonic ejector

    图  2  网格无关性验证

    Figure  2.  Grid independence verification

    图  3  超-超引射器启动状态马赫云图

    Figure  3.  Mach number contours of the supersonic-supersonic ejector,under start-up state

    图  4  超-超引射器启动状态静压云图

    Figure  4.  Static pressure contours of the supersonic-supersonic ejector,under start-up state

    图  5  不同二次流总温时沿程静压分布(ϕ=0.9)

    Figure  5.  Static pressure distribution on canter line at different secondary flow temperatures (ϕ=0.9)

    图  6  临界总温比随收缩比变化曲线

    Figure  6.  Change curve of critical total temperature ratio at different contraction ratios

    图  7  中心轴线压力分布随一次流总压变化曲线(ϕ=0.8,p2*=0.221 MPa)

    Figure  7.  Static pressure distribution at center line under total pressure of different primary flow (ϕ=0.8,p2*=0.221 MPa)

    图  8  流场马赫云图(ϕ=0.8,p1*=1.0 MPa)

    Figure  8.  Mach number of ejector flow field (ϕ=0.8,p1*=1.0 MPa)

    图  9  临界总压比随收缩比变化曲线

    Figure  9.  Change curve of critical total pressure ratio at different contraction ratios

    图  10  引射系数随总压比变化曲线

    Figure  10.  Ejector coefficient under different total pressure ratio and contraction ratio

    图  11  启动系数随总压比变化曲线

    Figure  11.  Starting coefficient under different total pressure ratio and contraction ratio

    图  12  启动系数随总温比变化曲线

    Figure  12.  Starting coefficient under different total temperature ratio and contraction ratio

    图  13  引射系数随总温比变化曲线

    Figure  13.  Ejector coefficient under different total temperature ratio and contraction ratio

    表  1  超超引射器结构参数

    Table  1.   Structural parameters of supersonic-supersonic ejector

    H0/mmH1/H0H2/H0H4/H0L1/H0L2/H0α/(°)β/(°)
    320.32.91.814.110.937
    下载: 导出CSV

    表  2  不同收缩比下超-超引射器结构参数

    Table  2.   Structure of supersonic-supersonic ejector parameters with different contraction ratios

    $ \phi $H3/H0L2/H3H5/H0
    0.702.2363.48
    0.751.863.72
    0.801.993.97
    0.852.114.22
    0.902.234.47
    下载: 导出CSV
  • [1] 陈健. 超-超引射器内部流动过程研究[D]. 长沙: 国防科学技术大学, 2012.

    Chen Jian. Researches on the flow process of the supersonic-supersonic ejector[D]. Changsha: Graduate School of National University of Defense Technology, 2012
    [2] Zimet E. Steady state and transient operation of an ejector for a chemical laser cold flow mixing experiment[R]. Naval Surface Weapon Center/WOL/TR 76-142, 1976.
    [3] Batt R G, Behrens H W. Chemical laser advanced diffuser ejector (CLADE) program alternate V—Far advanced technology concepts[R]. DRCPM-HEL-VR-79-1, 1978.
    [4] Singhal G, Mainuddina, Tyagia R K, et al. Pressure recovery studies on a supersonic COIL with central ejector configuration[J]. Optics & Laser Technology, 2010, 42(7): 1145-1153.
    [5] Gaurav S, Rajesh R, Mainuddin, et al. Two-stage ejector based pressure recovery system or small scale coil[C]//36th AIAA Plasma dynamics and Laser Conference. 2005.
    [6] Etele J, Sisilian J P, Parent B. Variable area ejectors for increasing the compression factor of an RBCC engine[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004.
    [7] Foelsche R O, Tsai C Y, Bakos R J. Experiments on a RBCC ejector scramjet with integrated, staged secondary-fuel injection[R]. AIAA 99-2242, 1999.
    [8] 刘盛田, 邱雄飞, 李金雪, 等. 二维超-超引射器混合室流场特性[J]. 强激光与粒子束, 2014, 26:101007. (Liu Shengtian, Qiu Xiongfei, Li Jinxue, et al. Flow structure of 2-D supersonic-supersonic ejector mixing chamber[J]. High Power Laser and Particle Beams, 2014, 26: 101007 doi: 10.11884/HPLPB201426.101007
    [9] 王宗浩, 邹建军, 黄洁. 两级超声速引射器流动机理研究[J]. 推进技术, 2013, 34(10):1304-1309. (Wang Zonghao, Zhou Jianjun, Huang Jie. Supersonic to supersonic ejection mechanism of a two-stage ejector[J]. Journal of Propulsion Technology, 2013, 34(10): 1304-1309
    [10] Dutton J C, Addy A L. One-dimensional analysis of supersonic-supersonic ejector-diffuser systems for chemical laser applications[R]. UILU-ENG-78-4015, 1978.
    [11] Mikkelsen C D, Sandberg M R, Addy A L. Theoretical and experimental analysis of the constant-area, supersonic-supersonic ejector[R]. UILU-ENG-76-4003, 1976.
    [12] Dutton J C, Mikkelsen C D, Addy A L. A theoretical and experimental investigation of the constant area, supersonic-supersonic ejector[J]. AIAA Journal, 1982, 20(10): 1392-1400.
    [13] 吕辉强. 二维超声速空气引射器理论与实验研究[D]. 国防科学技术大学, 2008.

    Lü Huiqiang. Theory and experimental investigation of two-dimensional supersonic air ejector[D]. Changsha: Graduate School of National University of Defense Technology, 2008
    [14] 陈钦, 陈吉明, 蔡光明, 等. 超-超引射器多目标优化设计[J]. 强激光与粒子束, 2012, 24(5):1043-1046. (Chen Qin, Chen Jiming, Cai Guangming, et al. Multi-objective optimization of supersonic-supersonic ejector[J]. High Power Laser and Particle Beams, 2012, 24(5): 1043-1046 doi: 10.3788/HPLPB20122405.1043
    [15] 张鲲鹏, 薛飞, 潘卫明, 等. 高压气体引射器的试验研究和仿真[J]. 热科学与技术, 2004, 2(3):133-138. (Zhang Kunpeng, Xue Fei, Pan Weiming, et al. Experimental investigation and numerical simulation of high-pressure gas ejector[J]. Journal of Thermal Science and Technology, 2004, 2(3): 133-138
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  238
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 修回日期:  2021-04-19
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回