留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ka波段宽频带行波管放大器线性化研究

韩飞 夏雷 李宝建

韩飞, 夏雷, 李宝建. Ka波段宽频带行波管放大器线性化研究[J]. 强激光与粒子束, 2021, 33: 043003. doi: 10.11884/HPLPB202133.200353
引用本文: 韩飞, 夏雷, 李宝建. Ka波段宽频带行波管放大器线性化研究[J]. 强激光与粒子束, 2021, 33: 043003. doi: 10.11884/HPLPB202133.200353
Han Fei, Xia Lei, Li Baojian. Study on linearization of Ka-band wideband traveling-wave tube amplifer[J]. High Power Laser and Particle Beams, 2021, 33: 043003. doi: 10.11884/HPLPB202133.200353
Citation: Han Fei, Xia Lei, Li Baojian. Study on linearization of Ka-band wideband traveling-wave tube amplifer[J]. High Power Laser and Particle Beams, 2021, 33: 043003. doi: 10.11884/HPLPB202133.200353

Ka波段宽频带行波管放大器线性化研究

doi: 10.11884/HPLPB202133.200353
基金项目: 预研基金项目(2019-JCJQ-JJ-57X)
详细信息
    作者简介:

    韩 飞(1994—),男,硕士研究生,工程师,主要从事行波管线性化理论与技术研究;741914151@qq.com

  • 中图分类号: TN402

Study on linearization of Ka-band wideband traveling-wave tube amplifer

  • 摘要: 线性化器是毫米波通信系统中的关键器件,在改善放大器的线性指标及提高通信质量等方面起着至关重要的作用。现阶段国内行波管放大器(TWTA)线性化技术尚不完善,无法满足通信技术发展的应用需求,因此线性化技术的研究刻不容缓。本文提出了一种新的宽频带模拟预失真线性化器结构,用来改善Ka波段TWTA的非线性特性。仿真结果表明,在26~30 GHz频率范围内,输入功率为−20~10 dBm,线性化器的增益扩张≥5.08 dB,相位扩张≥64.81 °。将线性化器与TWTA进行级联测试,中心频率的增益压缩≤3.12 dB,相位压缩≤2.31 °,三阶互调(IMD3)显著提高。
  • 图  1  模拟预失真技术原理图

    Figure  1.  Schematic diagram of simulated pre-distortion technique

    图  2  反射式电路原理图

    Figure  2.  Schematic diagram of reflection circuit

    图  3  二分支电桥结构仿真结果

    Figure  3.  Simulation results of two-branch bridge structure

    图  4  三分支电桥结构仿真结果

    Figure  4.  Simulation results of three-branch bridge structure

    图  5  四分支电桥结构仿真模型

    Figure  5.  Simulation model of four-branch bridge structure

    图  6  四分支电桥结构仿真结果

    Figure  6.  Simulation results of four-branch bridge structure

    图  7  预失真结构仿真模型

    Figure  7.  Simulation model of the pre-distorted structure

    图  8  ADS仿真结构图

    Figure  8.  ADS simulation structure diagram

    图  9  预失真电路非线性特性

    Figure  9.  Nonlinear characteristics of pre-distortion circuits

    图  10  线性化器实物图

    Figure  10.  A picture of the linearizer

    图  11  预失真电路测试图

    Figure  11.  Test diagram of pre-distortion circuits

    表  1  电桥的仿真数据

    Table  1.   Simulation data of the bridge

    f/GHzS(3,1)/dBS(4,1)/dBS(1,1)/dBS(2,1)/dBS(3,4)/dB
    two-branch bridgethree-branch bridgefour-branch bridgetwo-branch bridgethree-branch bridgefour-branch bridgetwo-branch bridgethree-branch bridgefour-branch bridgetwo-branch bridgethree-branch bridgefour-branch bridgetwo-branch bridgethree-branch bridgefour-branch bridge
    26 −2.97 −3.63 −3.31 −3.51 −2.68 −3.02 −19.32 −33.79 −24.42 −16.17 −21.46 −18.88 −18.46 −32.36 −19.59
    28 −2.42 −3.23 −3.18 −3.85 −2.99 −3.15 −48.48 −33.38 −28.18 −27.92 −26.41 −17.81 −44.82 −31.55 −24.14
    30 −2.32 −3.03 −3.31 −4.17 −3.26 −3.07 −20.20 −21.40 −21.27 −22.19 −26.73 −18.47 −19.25 −21.00 −26.81
    下载: 导出CSV

    表  2  增益压缩测试数据

    Table  2.   Test data of the gain compression

    IPBO/dBgain compression of TWTA/dBgain compression of linearized TWTA/dB
    0−5.81−3.12
    3−3.31−1.06
    6−1.77−0.36
    9−0.92−0.18
    13−0.34−0.10
    15−0.19−0.07
    下载: 导出CSV

    表  3  相位压缩测试数据

    Table  3.   Test data of the phase compression

    IPBO/dBphase compression of TWTA/(°)phase compression of linearized TWTA/(°)
    0−33.31−0.81
    3−23.88+1.6
    6−14.77+2.31
    9−8.39+1.52
    13−3.5+0.79
    15−2.03+0.42
    下载: 导出CSV

    表  4  IMD3测试数据

    Table  4.   Test data of IMD3

    IPBO/dBIMD3 of TWTA/dBIMD3 of linearized TWTA/dB
    3−10.75−12.30
    4−11.74−14.39
    6−13.94−20.08
    9−17.97−32.36
    13−24.11−35.12
    下载: 导出CSV
  • [1] 王晓海. 毫米波通信技术的发展与应用[J]. 电信快报, 2007(10):19-21. (Wang Xiaohai. Millimeter wave communication technology and its development and application[J]. Telecommunications Information, 2007(10): 19-21
    [2] Pozar D M. 微波工程[M]. 张肇仪, 周乐柱, 吴德明, 译. 北京: 电子工业出版社, 2006.

    Pozar D M. Microwave engineering[M]. Zhang Zhaoyi, Zhou Lezhu, Wu Deming, trans. Beijing: Publishing House of Electronics Industry, 2006
    [3] Bahl I J. 射频与微波晶体管放大器基础[M]. 鲍景富, 孙玲玲, 译. 北京: 电子工业出版社, 2013.

    Bahl I J. Fundamentals of RF and microwave transistor amplifiers[M]. Bao Jingfu, Sun Lingling, trans. Beijing: Publishing House of Electronics Industry, 2013
    [4] 李少岚, 延波, 李晨飞, 等. 采用二极管的模拟预失真毫米波功放线性化器[J]. 微波学报, 2012, 28(1):70-72. (Li Shaolan, Yan Bo, Li Chenfei, et al. Design of an analog pre-distortion linearizer using Schottky diodes for millimeter-wave power amplifier[J]. Journal of Microwaves, 2012, 28(1): 70-72
    [5] 李晨飞. 毫米波频段预失真技术的研究[D]. 成都: 电子科技大学, 2011: 50-55.

    Li Chenfei. Linearization technology of millimeter wave power amplifier[D]. Chengdu: University of Electronic Science and Technology, 2011: 50-55
    [6] Yamauchi K, Mori K, Nakayama M, et al. A microwave miniaturized linearizer using a parallel diode with a bias feed resistance[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2431-2435. doi: 10.1109/22.643856
    [7] 杨金榜. 毫米波线性化技术研究[D]. 成都: 电子科技大学, 2017: 39-44.

    Yang Jinbang. The research of millimeter-wave linearization technology[D]. Chengdu: University of Electronic Science and Technology, 2017: 39-44
    [8] 周斌, 黄微波, 贺彬, 等. 行波管放大器在通信、导航卫星中的应用[C]//2016真空电子学分会第二十届学术年会论文集(上). 2016.

    Zhou Bin, Huang Weibo, He Bin, et al. Application of TWT amplifier in communication and navigation satellite[C]//Proceedings of the 20th Annual Conference of Vacuum Electronics Branch (Part 1). 2016
    [9] Zhang W M, Yuen C. A broadband linearizer for Ka-band satellite communication[C]//Proceedings of the 1998 IEEE MTT-S International Microwave Symposium Digest. Baltimore: IEEE, 1998, 3: 1203-1206.
    [10] 张旭阳. 毫米波预失真技术研究[D]. 成都: 电子科技大学, 2014: 41-76.

    Zhang Xuyang. Millimeter-wave predistortion technology research[D]. Chengdu: University of Electronic Science and Technology, 2014: 41-76
    [11] Katz A, Sudarsanam R, Aubert D. A reflective diode linearize for spacecraft applications[C]//Proceedings of the 1985 IEEE MTT-S International Microwave Symposium Digest. St. Louis: IEEE, 1985.
    [12] Zhou Rui, Xie Xiaoqiang, Yan Bo, et al. A millimeter-wave predistortion linearizer for traveling wave tube amplifiers[C]//Proceedings of the 2012 International Conference on Microwave and Millimeter Wave Technology. Shenzhen: IEEE, 2012.
    [13] 邓海林, 陈会超, 周东方, 等. 一种补偿量可调的反射式预失真线性化器[J]. 真空科学与技术学报, 2018, 38(8):657-662. (Deng Hailin, Chen Huichao, Zhou Dongfang, et al. Design and evaluation of modified reflective predistortion linearizer with tunable compensation[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 657-662
    [14] 清华大学《微带电路》编写组. 微带电路[M]. 北京: 清华大学出版社, 2017: 179-191.

    Writing Group of "Microstrip Circuit" of Tsinghua University. Microstrip circuit[M]. Beijing: Tsinghua University Press, 2017: 179-191
    [15] 秦志飞. 毫米波模拟线性化器设计研究[D]. 成都: 电子科技大学, 2020: 40-42.

    Qin Zhifei. Research and design of millimeter-wave analog linearizer[D]. Chengdu: University of Electronic Science and Technology, 2020: 40-42
    [16] 邱诗浩. 基于HFSS的金属箱体屏蔽效能的研究[J]. 电子技术与软件工程, 2017(8):111. (Qiu Shihao. Research on shielding effectiveness of metalbox based on HFSS[J]. Electronic Technology & Software Engineering, 2017(8): 111
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  977
  • HTML全文浏览量:  278
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-03-04
  • 网络出版日期:  2021-03-17
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回