留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态双极性纳秒脉冲电源研制及应用

李帅康 黄邦斗 章程 邵涛

李帅康, 黄邦斗, 章程, 等. 全固态双极性纳秒脉冲电源研制及应用[J]. 强激光与粒子束, 2021, 33: 065005. doi: 10.11884/HPLPB202133.210008
引用本文: 李帅康, 黄邦斗, 章程, 等. 全固态双极性纳秒脉冲电源研制及应用[J]. 强激光与粒子束, 2021, 33: 065005. doi: 10.11884/HPLPB202133.210008
Li Shuaikang, Huang Bangdou, Zhang Cheng, et al. Development and application of all-solid-state bi-polar nanosecond pulse generators[J]. High Power Laser and Particle Beams, 2021, 33: 065005. doi: 10.11884/HPLPB202133.210008
Citation: Li Shuaikang, Huang Bangdou, Zhang Cheng, et al. Development and application of all-solid-state bi-polar nanosecond pulse generators[J]. High Power Laser and Particle Beams, 2021, 33: 065005. doi: 10.11884/HPLPB202133.210008

全固态双极性纳秒脉冲电源研制及应用

doi: 10.11884/HPLPB202133.210008
基金项目: 国家自然科学基金项目(51925703,51637010,51907190)
详细信息
    作者简介:

    李帅康(1997—),男,硕士研究生,主要从事气体放电等离子体相关研究

    通讯作者:

    黄邦斗(1992—),男,博士,助理研究员,主要从事脉冲功率技术、等离子体诊断、反应动理学相关研究

  • 中图分类号: TM832; O539

Development and application of all-solid-state bi-polar nanosecond pulse generators

  • 摘要: 研制了一种双极性交替的纳秒高压脉冲电源,进行了双极性纳秒脉冲放电产生等离子体研究。该电源先通过固态开关IGBT将直流电压截断成电压脉冲,通过可饱和脉冲变压器拓扑,实现升压并缩短脉冲上升沿。该电源可在一个周期内输出极性相反的2个脉冲,且时序可以灵活控制。通过优化调整器件参数,研制了两种不同输出性能参数的双极性纳秒脉冲电源:①峰值电压10 kV、爆发模式脉冲重复频率500 kHz(正负脉冲间隔2 μs)、连续重复频率1 kHz;②峰值电压25 kV、爆发重频200 kHz、连续重频600 Hz。测试电源的运行性能,发现电源存在温度升高的情况,但长时间(>0.5 h)运行温度趋于稳定。10 kV电源连续运行在1 kHz时最高温度点50.5 ℃;25 kV电源连续运行在600 Hz时最高温度点60 ℃。利用该电源驱动线板电极阵列和表面介质阻挡放电结构,证实了该电源可以用于常压空气条件下产生大面积等离子体。
  • 图  1  双极性纳秒脉冲电源整体框图

    Figure  1.  Overall block diagram of bipolar nanosecond pulse power supply

    图  2  脉冲产生电路原理图

    Figure  2.  Schematic diagram of pulse production circuit

    图  3  脉冲充放电能量流通路径

    Figure  3.  Energy flow path of pulse charging and discharging

    图  4  电容C3电压波形

    Figure  4.  Voltage waveform of capacitor C3

    图  5  双极性脉冲电源实物图

    Figure  5.  Pictures of bipolar pulse power supply

    图  6  两电源不同输入电压时的输出结果

    Figure  6.  Output results of two power supplies with different input voltages

    图  7  高频工作波形

    Figure  7.  High frequency working waveforms

    图  8  爆发模式波形

    Figure  8.  Burst mode waveforms

    图  9  两电源温升情况

    Figure  9.  Temperature rise of two power supplies

    图  10  两电源IGBT运行温度

    Figure  10.  Operating temperature of two power supply IGBTs

    图  11  10 kV电源产生放电等离子体

    Figure  11.  10 kV power supply produces discharge plasma

    图  12  10 kV电源带SDBD负载时输出电压电流波形

    Figure  12.  Output voltage and current waveform of 10 kV power supply with load

    图  13  25 kV电源产生放电等离子体

    Figure  13.  25 kV power supply produces discharge plasma

    表  1  器件型号与关键参数

    Table  1.   Tow device models and their key parameters

    parametervalue
    10 kV pulse generator25 kV pulse generator
    magnetic core size/mm 25/40/15 35/60/20
    saturation magnetic induction/T 0.54 1.2
    square ratio 0.94 0.85
    N1N2 2∶25 2∶42
    inductance of primary winding/μH 63/56.9/50.55 67/42.2/35.13
    inductance of secondary winding/mH 24.8/9.131/5.421 69.94/28.98/16.94
    leakage inductance of primary winding/μH 1/0.5/0.49 25/1.3/1.023
    leakage inductance of secondary winding/mH 0.851/0.163/0.516 1.65/0.447/0.314
    IGBT IRGPS60B120KD 2MBI450VH-120-50
    Note: inductance values of each parameter are tested under 0.1, 1, 10 kHz.
    下载: 导出CSV

    表  2  与已有电源参数对比

    Table  2.   Parameter comparison with previous work

    technical routepeak-to-peak voltage/kVpulse repetition frequency/kHzrise time/nspulse width/nsreference
    Marx generator based on solid-state switches100.13283100[9]
    cascaded superposition20102005000[10]
    drift step recovery diode2.210001~3[12]
    linear transformer driver5330030~100[13]
    magnetic compression2050050104this work
    5020090254
    下载: 导出CSV

    表  3  放电参数对比(SDBD)

    Table  3.   Comparison of discharge parameters (Surface Dielectric Barrier Discharge, SDBD)

    power sourcepeak-to-peak voltage/kVdischarge areareferences
    2 kHz AC11.930.4 mm×10 mm[23]
    35~55 kHz AC12~2150 mm×15 mm[24]
    positive pulse2070 mm×19 mm[25]
    bipolar pulse2081 mm×25 mmthis work
    下载: 导出CSV

    表  4  放电参数对比

    Table  4.   Comparison of discharge parameters

    power sourceelectrode geometryvoltage/kVdistance/mmreferences
    DC powerwire-to-plate3020[26]
    DC powerwire-to-plate2250[27]
    DC powerwire-to-plate1820[28]
    positive pulsetube-to-plate3130[29]
    positive pulsepin-to-pin17.510[30]
    negative pulsepin/tube-to-plate10040[31]
    bipolar pulsewire-to-plate2560this work
    下载: 导出CSV
  • [1] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [2] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [3] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16):3494-3503. (Wu Shilin, Yang Qing, Shao Tao. Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503
    [4] Yu Weixin, Kong Fei, Dong Pan, et al. Depositing chromium oxide film on alumina ceramics enhances the surface flashover performance in vacuum via PECVD[J]. Surface and Coatings Technology, 2021, 405: 126509. doi: 10.1016/j.surfcoat.2020.126509
    [5] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [6] Zhang Cheng, Huang Bangdou, Luo Zhenbing, et al. Atmospheric-pressure pulsed plasma actuators for flow control: shock wave and vortex characteristics[J]. Plasma Sources Science and Technology, 2019, 28(6): 064001. doi: 10.1088/1361-6595/ab094c
    [7] 于维鑫, 朱文超, 程晓, 等. 纳秒脉冲等离子体合成射流激励器的流场特性分析[J]. 气体物理, 2021, 6(2):38-45. (Yu Weixin, Zhu Wenchao, Cheng Xiao, et al. Analysis of flow field of nanosecond pulsed plasma synthetic jet[J]. Physics of Gases, 2021, 6(2): 38-45
    [8] 康少芬, 张帅, 陈晓晓, 等. 纳秒脉冲介质阻挡放电等离子体氮还原合成氨的研究[J]. 高电压技术, 2021, 47(1):368-375. (Kang Shaofen, Zhang Shuai, Chen Xiaoxiao, et al. Study on reduction of nitrogen to ammonia by nanosecond pulse dielectric barrier discharge plasma[J]. High Voltage Engineering, 2021, 47(1): 368-375
    [9] 饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33:025001. (Rao Junfeng, Li Encheng, Wang Yonggang, at al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001
    [10] 韩静, 高迎慧, 孙鹞鸿, 等. 级联型高压重频微秒脉冲电源的研制[J]. 高电压技术, 2019, 45(11):3762-3768. (Han Jing, Gao Yinghui, Sun Yaohong, et al. Design of cascade high-voltage repeated-frequency microsecond-pulse power supply[J]. High Voltage Engineering, 2019, 45(11): 3762-3768
    [11] 赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32:105002. (Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002
    [12] Merensky L M, Kardo-Sysoev A F, Shmilovitz D, et al. Efficiency study of a 2.2 kV, 1 ns, 1 MHz pulsed power generator based on a drift-step-recovery diode[J]. IEEE Transactions on Plasma Science, 2013, 41(11): 3138-3142. doi: 10.1109/TPS.2013.2284601
    [13] Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
    [14] Huiskamp T. Nanosecond pulsed streamer discharges Part I: Generation, source-plasma interaction and energy-efficiency optimization[J]. Plasma Sources Science and Technology, 2020, 29: 023002. doi: 10.1088/1361-6595/ab53c5
    [15] Zhao Zheng, Li Jiangtao. Repetitively pulsed gas discharges: memory effect and discharge mode transition[J]. High Voltage, 2020, 5(5): 569-582. doi: 10.1049/hve.2019.0383
    [16] Huang Bangdou, Zhang Cheng, Adamovich I, et al. Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: the influence of dielectric material and pulse repetition rate[J]. Plasma Sources Science and Technology, 2020, 29: 044001. doi: 10.1088/1361-6595/ab7854
    [17] 李波, 李博婷, 叶超, 等. 双极性脉冲磁控溅射电源设计[J]. 强激光与粒子束, 2018, 30:045004. (Li Bo, Li Boting, Ye Chao, et al. Design of bipolar pulsed magnetron sputtering power supply[J]. High Power Laser and Particle Beams, 2018, 30: 045004 doi: 10.11884/HPLPB201830.170393
    [18] Li Zhang, Yang Dezheng, Wang Wenchun, et al. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap[J]. Journal of Applied Physics, 2014, 116: 113301. doi: 10.1063/1.4895982
    [19] 石小燕, 任先文, 刘平, 等. 基于MOSFET的高重复频率高压脉冲源设计[J]. 强激光与粒子束, 2019, 31:040022. (Shi Xiaoyan, Ren Xianwen, Liu Ping, et al. Design of high repetition rate and high voltage pulse generator based on metal oxide semiconductor field-effect transistor[J]. High Power Laser and Particle Beams, 2019, 31: 040022 doi: 10.11884/HPLPB201931.180321
    [20] Yin Tianxiang, Xu Chen, Lin Lei, et al. A SiC MOSFET and Si IGBT hybrid modular multilevel converter with specialized modulation scheme[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 12623-12628. doi: 10.1109/TPEL.2020.2993366
    [21] Orlacchio R, Carr L, Palego C, et al. High-voltage 10 ns delayed paired or bipolar pulses for in vitro bioelectric experiments[J]. Bioelectrochemistry, 2021, 137: 107648. doi: 10.1016/j.bioelechem.2020.107648
    [22] Wang Gang, Su Jiancang, Ding Zhenjie, et al. A semiconductor opening switch based generator with pulse repetitive frequency of 4 MHz[J]. Review of Scientific Instruments, 2013, 84: 125102. doi: 10.1063/1.4833683
    [23] Pescini E, De Giorgi M G, Suma A, et al. Separation control by a microfabricated SDBD plasma actuator for small engine turbine applications: influence of the excitation waveform[J]. Aerospace Science and Technology, 2018, 76: 442-454. doi: 10.1016/j.ast.2018.01.019
    [24] 魏德宸, 张国鑫, 陈永彬. 气隙构型对高频交流SDBD防除冰激励器的温升影响[J]. 航空学报, 2021, 42:124195. (Wei Dechen, Zhang Guoxin, Chen Yongbin. Effects of air-gap on the temperature rise characteristics of AC-SDBD actuator anti-icing and deicing actuator under high frequency[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42: 124195
    [25] Peng Bangfa, Shang Kefeng, Liu Zhengyan, et al. Evolution of three-electrode pulsed surface dielectric barrier discharge: primary streamer, transitional streamer and secondary reverse streamer[J]. Plasma Sources Science and Technology, 2020, 29: 035018. doi: 10.1088/1361-6595/ab6f23
    [26] Yao Xiaomei, Peng Bangfa, Jiang Nan, et al. Investigation of toluene removal by DC discharge with MgO/NiO/Ni cathode under different operating parameters[J]. Journal of Physics D: Applied Physics, 2020, 53: 085201. doi: 10.1088/1361-6463/ab5732
    [27] Ait Said H, Nouri H, Zebboudj Y. Effect of air flow on corona discharge in wire-to-plate electrostatic precipitator[J]. Journal of Electrostatics, 2015, 73: 19-25. doi: 10.1016/j.elstat.2014.10.004
    [28] Li Ziyi, Liu Yingshu, Xing Yi, et al. Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution[J]. Environmental Science & Technology, 2015, 49(14): 8683-8690.
    [29] Zhang Cheng, Qiu Jintao, Kong Fei, et al. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20: 014011. doi: 10.1088/2058-6272/aa8c6e
    [30] Zhang Cheng, Shao Tao, Yan Ping, et al. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air[J]. Plasma Sources Science and Technology, 2014, 23: 035004. doi: 10.1088/0963-0252/23/3/035004
    [31] Shao Tao, Tarasenko V F, Yang Wenjin, et al. Spots on electrodes and images of a gap during pulsed discharges in an inhomogeneous electric field at elevated pressures of air, nitrogen and argon[J]. Plasma Sources Science and Technology, 2014, 23: 054018. doi: 10.1088/0963-0252/23/5/054018
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1850
  • HTML全文浏览量:  376
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30
  • 修回日期:  2021-05-02
  • 网络出版日期:  2021-05-22
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回