New type of triggered vacuum switch based on gas-breathing electrode
-
摘要: 针对真空触发开关触发时延和抖动大、使用寿命不长的难题,设计了一种基于吸气电极的新型真空触发开关,开展工作寿命测试实验和不同触发极性、主间隙电压和触发能量下的导通特性实验。实验结果表明:与纯金属电极开关相比,吸气电极开关的触发时延和抖动更小,工作寿命更长。负极性触发时的触发时延和抖动均远低于正极性触发。正极性触发的触发时延为1.7~3 μs,抖动为300~700 ns,而负极性触发的触发时延为400~600 ns,抖动为30~70 ns。触发时延和抖动都随着触发能量的增大而减小,但当能量高于一定值后,触发能量对导通特性的影响趋于饱和。Abstract: Aiming at the difficult problems of trigger delay, jitter and short life of triggered vacuum switch, A new type of triggered vacuum switch based on a gas-breathing electrode was designed to carry out life test and conduction characteristic experiment under different trigger polarity, main gap voltage and trigger energy. The experimental results show that compared with the pure metal electrode switch, the gas-breathing electrode switch has shorter trigger delay, shorter jitter and longer working life. The trigger delay and jitter of negative polarity trigger are lower than that of positive polarity trigger. The trigger delay of positive polarity trigger is 1.7−3.0 μs, and the delay jitter is 300−700 ns. The trigger delay of negative polarity trigger is 400−600 ns, and the jitter is 30−70 ns. The trigger delay and jitter decrease with the increase of trigger energy, but when the energy is higher than a certain value, the influence of trigger energy on the conduction characteristics tends to be saturated.
-
Key words:
- gas-breathing electrode /
- triggered vacuum switch /
- trigger delay /
- trigger polarity /
- trigger energy /
- working life
-
表 1 吸气触发极开关统计结果
Table 1. Statistical results of gas-breathing trigger electrode switch
No. average trigger breakdown voltage/kV average trigger delay/ns success rate of conduction/% 0~50 3.85 390 100 51~100 3.54 453 100 101~150 3.61 385 100 151−200 3.27 480 100 201~250 3.31 430 100 251~300 3.22 498 98 表 2 金属触发极开关统计结果
Table 2. Statistical results of metal trigger electrode switch
No. average trigger breakdown voltage/kV average trigger delay/ns success rate of conduction/% 0~50 4.02 1850 100 51~100 3.21 2270 94 101−150 2.65 2460 80 151~200 2.13 2750 68 201~250 1.67 3100 44 251~300 1.32 3460 24 -
[1] 何俊佳, 邹积岩, 王海, 等. 高性能大功率触发真空开关的研究[J]. 电工电能新技术, 1997, 16(2):28-32. (He Junjia, Zou Jiyan, Wang Hai, et al. Review of development in high quality, high power triggered vacuum switches[J]. Advanced Technology of Electrical Engineering and Energy, 1997, 16(2): 28-32 [2] 廖敏夫, 邹积岩, 段雄英, 等. 高性能真空触发开关技术的研究综述[J]. 高压电器, 2006, 42(1):51-54. (Liao Minfu, Zou Jiyan, Duan Xiongying, et al. Overview on techniques of high-performance triggered vacuum switch[J]. High Voltage Apparatus, 2006, 42(1): 51-54 doi: 10.3969/j.issn.1001-1609.2006.01.016 [3] Lafferty J M. Triggered vacuum gaps[J]. Proceedings of the IEEE, 1966, 54(1): 23-32. doi: 10.1109/PROC.1966.4570 [4] Kamakshaiah S, Rau R S N. Delay characteristics of a simple triggered vacuum gap[J]. Journal of Physics D: Applied Physics, 1975, 8(12): 1426-1495. doi: 10.1088/0022-3727/8/12/014 [5] Raju G R G, Hackam R, Benson F A. Breakdown mechanisms and electrical properties of triggered vacuum gaps[J]. Journal of Applied Physics, 1976, 47(4): 1310-1317. doi: 10.1063/1.322832 [6] 吴汉基, 安世明, 冯学章, 等. 触发真空开关的触发寿命[J]. 高压电器, 1987, 29(6):37-43. (Wu Hanji, An Shiming, Feng Xuezhang, et al. The triggered lifetime of triggered vacuum switches[J]. High Voltage Apparatus, 1987, 29(6): 37-43 [7] 夏胜国, 董曼玲, 何俊佳, 等. 场击穿式TVS时延特性的测量与分析[J]. 高电压技术, 2007, 33(9):167-170, 178. (Xia Shengguo, Dong Manling, He Junjia, et al. Measurement and analysis of time delay characteristics of a field-breakdown triggered vacuum switches[J]. High Voltage Engineering, 2007, 33(9): 167-170, 178 doi: 10.3969/j.issn.1003-6520.2007.09.037 [8] 胡国威, 夏长征, 陈仕修, 等. 真空触发开关导通瞬间高频脉冲电压的测量[J]. 高压电器, 2004, 40(5):364-365, 369. (Hu Guowei, Xia Changzheng, Chen Shixiu, et al. Measurement of the high frequency pulse when the triggered vacuum switch turns on[J]. High Voltage Apparatus, 2004, 40(5): 364-365, 369 doi: 10.3969/j.issn.1001-1609.2004.05.015 [9] 邹积岩, 段雄英, 扈志宏. 真空触发开关通断特性实验研究[J]. 大连理工大学学报, 2000, 40(S1):20-23. (Zou Jiyan, Duan Xiongying, Hu Zhihong. Experimental investigations on operation capacity of triggered vacuum switches[J]. Journal of Dalian University of Technology, 2000, 40(S1): 20-23 [10] 盖斐, 陈仕修, 陈堃, 等. 长间隙真空触发开关导通特性[J]. 强激光与粒子束, 2012, 24(4):847-850. (Gai Fei, Chen Shixiu, Chen Kun, et al. Conduction characteristics of long-gap triggered vacuum switch[J]. High Power Laser and Particle Beams, 2012, 24(4): 847-850 doi: 10.3788/HPLPB20122404.0847 [11] 王延召, 戴玲, 周正阳, 等. 多棒极型触发真空开关极性效应[J]. 强激光与粒子束, 2012, 24(3):587-591. (Wang Yanzhao, Dai Ling, Zhou Zhengyang, et al. Polarity effect on triggered vacuum switch with multi-rod system[J]. High Power Laser and Particle Beams, 2012, 24(3): 587-591 doi: 10.3788/HPLPB20122403.0587 [12] 张亚丽, 冯卫刚. 真空触发开关的触发极结构研究[J]. 真空电子技术, 2017(1):73-75. (Zhang Yali, Feng Weigang. Research on trigger electrode structures of triggered vacuum switches[J]. Vacuum Electronics, 2017(1): 73-75 [13] 魏荣华, 吴汉荃, 史长龙, 等. 触发真空开关[J]. 高压电器, 1983, 25(6):50-56. (Wei Ronghua, Wu Hanquan, Shi Changlong, et al. Triggered vacuum switch[J]. High Voltage Apparatus, 1983, 25(6): 50-56 [14] Vozdvijensky V A, Sidorov V A. Initial stage of discharge current growth in a triggered vacuum gap[J]. IEEE Transactions on Plasma Science, 1991, 19(5): 778-781. doi: 10.1109/27.108414