留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带低相干光单次时间相干性测量研究

侯春媛 饶大幸 李福建 郑权 高妍琦 崔勇 赵晓晖 贺瑞敬 隋展 向霞

侯春媛, 饶大幸, 李福建, 等. 宽带低相干光单次时间相干性测量研究[J]. 强激光与粒子束, 2021, 33: 071005. doi: 10.11884/HPLPB202133.210027
引用本文: 侯春媛, 饶大幸, 李福建, 等. 宽带低相干光单次时间相干性测量研究[J]. 强激光与粒子束, 2021, 33: 071005. doi: 10.11884/HPLPB202133.210027
Hou Chunyuan, Rao Daxing, Li Fujian, et al. Single-shot measurement method of temporal coherence for low-coherence broadband light[J]. High Power Laser and Particle Beams, 2021, 33: 071005. doi: 10.11884/HPLPB202133.210027
Citation: Hou Chunyuan, Rao Daxing, Li Fujian, et al. Single-shot measurement method of temporal coherence for low-coherence broadband light[J]. High Power Laser and Particle Beams, 2021, 33: 071005. doi: 10.11884/HPLPB202133.210027

宽带低相干光单次时间相干性测量研究

doi: 10.11884/HPLPB202133.210027
详细信息
    作者简介:

    侯春媛(1995—),女,硕士研究生,从事激光光场测量研究

    通讯作者:

    饶大幸(1987—),男,博士研究生,从事光纤激光技术研究

    向 霞(1974—),女,教授,博士,从事强激光、粒子束与物质相互作用研究

  • 中图分类号: O436.1

Single-shot measurement method of temporal coherence for low-coherence broadband light

  • 摘要: 传统测量光束时间相干性的方法是通过机械扫描的方式实现的,这种方法不能够实现单次测量,而且对于相干时间较短的宽带光测量误差较大。本文提出了一种单次时间相干性测量的新方法,通过给迈克尔逊干涉仪的反射镜引入楔角,使光束波前产生随位置变化的延迟差,可从单次测量的一幅干涉图中计算提取出光场完整的时间相干性信息。实验中测量了不同宽带入射光的时间相干性,均与理论结果吻合较好。单次时间相干性测量的方法将为高功率宽带激光装置提供更为方便的时间相干性测量手段,提高实验测量效率。
  • 图  1  迈克尔逊干涉仪示意图

    Figure  1.  Schematic of Michelson interferometer

    图  2  等厚干涉原理图

    Figure  2.  Schematic of equal thickness interference

    图  3  实验装置示意图

    Figure  3.  Schematic of experimental device

    图  4  SLD一阶时间相干特性

    Figure  4.  First-order temporal coherence of SLD

    图  5  ASE和啁啾脉冲的一阶时间相干特性对比

    Figure  5.  Comparison of the first-order temporal coherence of ASE and chirped pulse

  • [1] Labaune C. Laser-driven fusion: Incoherent light on the road to ignition[J]. Nature Physics, 2007, 3(10): 680-682. doi: 10.1038/nphys742
    [2] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060. doi: 10.1103/PhysRevLett.53.1057
    [3] Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance[J]. Optics Letters, 1996, 21(20): 1703-1705. doi: 10.1364/OL.21.001703
    [4] Deng Ximing, Liang Xiangchun, Chen Zezun, et al. Uniform illumination of large targets using a lens array[J]. Applied Optics, 1986, 25(3): 377-381. doi: 10.1364/AO.25.000377
    [5] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [6] Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Physics of Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016
    [7] Michel P, Divol L, Dewald E L, et al. Multibeam stimulated Raman scattering in inertial confinement fusion conditions[J]. Physical Review Letters, 2015, 115: 055003. doi: 10.1103/PhysRevLett.115.055003
    [8] Rosenberg M J, Solodov A A, Myatt J F, et al. Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments[J]. Physical Review Letters, 2018, 120: 055001. doi: 10.1103/PhysRevLett.120.055001
    [9] 魏晓峰, 李平. 激光聚变驱动器的光束相干性及其控制: 回顾与展望[J]. 强激光与粒子束, 2020, 32:121007. (Wei Xiaofeng, Li Ping. Beam coherence and control of laser fusion driver: retrospect and prospect[J]. High Power Laser and Particle Beams, 2020, 32: 121007
    [10] Rao Daxing, Gao Yanqi, Cui Yong, et al. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control[J]. Optics and Laser Technology, 2020, 122: 105850. doi: 10.1016/j.optlastec.2019.105850
    [11] Cui Yong, Gao Yanqi, Rao Daxing, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
    [12] 季来林, 赵晓晖, 刘栋, 等. 高功率钕玻璃激光系统低时间相干光频率转换技术研究进展[J]. 强激光与粒子束, 2020, 32:112009. (Ji Lailing, Zhao Xiaohui, Liu Dong, et al. Research progress of low-temporal-coherence light frequency conversion technology for high power Nd: glass laser system[J]. High Power Laser and Particle Beams, 2020, 32: 112009
    [13] Wuerker R F, Munch J, Heflinger L O. Coherence length measured directly by holography[J]. Applied Optics, 1989, 28(5): 1015-1017. doi: 10.1364/AO.28.001015
    [14] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112. doi: 10.1038/nphoton.2012.359
    [15] Wong T C, Rhodes M, Trebino R. Single-shot measurement of the complete temporal intensity and phase of supercontinuum[J]. Optica, 2014, 1(2): 119-124. doi: 10.1364/OPTICA.1.000119
    [16] Devrelis V, Connor O M, Munch J. Coherence length of single laser pulses as measured by CCD interferometry[J]. Applied Optics, 1995, 34(24): 5386-5389. doi: 10.1364/AO.34.005386
    [17] Papadakis V M, Stassinopoulos A, Anglos D, et al. Single-shot temporal coherence measurements of random lasing media[J]. Journal of the Optical Society of America B, 2007, 24(1): 31-36. doi: 10.1364/JOSAB.24.000031
    [18] Shih Yanhua. An introduction to quantum optics: photon and biphoton physics[M]. Florida: CRC Press (Taylor and Francis Group), 2011: 76-100.
    [19] 余瑞兰, 刘勇, 王安. 光纤Michelson干涉仪干涉条纹对比度的研究[J]. 大气与环境光学学报, 2007, 2(3):231-235. (Yu Ruilan, Liu Yong, Wang An. Contrast of interference stripes in optical fiber Michelson interferometer[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(3): 231-235 doi: 10.3969/j.issn.1673-6141.2007.03.016
    [20] Emil W. 光的相干与偏振理论导论[M]. 北京: 北京大学出版社, 2014: 26-47.

    Emil W. Introduction to the theory of coherence and polarization of light[M]. Beijing: Peking University Press, 2014: 26-47
  • 加载中
图(5)
计量
  • 文章访问数:  1204
  • HTML全文浏览量:  408
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 修回日期:  2021-03-17
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回