留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平台间光束耦合传输与控制技术研究

李国会 徐宏来 向汝建 杜应磊 张凯 吴晶 向振佼

李国会, 徐宏来, 向汝建, 等. 平台间光束耦合传输与控制技术研究[J]. 强激光与粒子束, 2021, 33: 081009. doi: 10.11884/HPLPB202133.210028
引用本文: 李国会, 徐宏来, 向汝建, 等. 平台间光束耦合传输与控制技术研究[J]. 强激光与粒子束, 2021, 33: 081009. doi: 10.11884/HPLPB202133.210028
Li Guohui, Xu Honglai, Xiang Rujian, et al. Technology of beam coupling transmission and control between platforms[J]. High Power Laser and Particle Beams, 2021, 33: 081009. doi: 10.11884/HPLPB202133.210028
Citation: Li Guohui, Xu Honglai, Xiang Rujian, et al. Technology of beam coupling transmission and control between platforms[J]. High Power Laser and Particle Beams, 2021, 33: 081009. doi: 10.11884/HPLPB202133.210028

平台间光束耦合传输与控制技术研究

doi: 10.11884/HPLPB202133.210028
详细信息
    作者简介:

    李国会(1977—),男,高级工程师,主要从事主动光学控制技术研究

  • 中图分类号: TN248.11

Technology of beam coupling transmission and control between platforms

  • 摘要: 介绍了平台间光路耦合传输系统的构成及光轴稳定控制的实现方法,开展了耦合校正系统和探测控制系统的设计,对校正系统进行了动态范围和模态仿真,优化设计后研制出光束耦合传输与控制系统。在对快反镜性能参数测试之后,开展了平台间光束耦合传输与控制实验,当振动台加载0 db振动谱且控制系统开环时,光轴X轴抖动10.9″@RSM,Y轴抖动102.3″@RSM,闭环时,光轴X轴抖动0.75″@RSM,Y轴抖动1.11″@RSM,通过频谱分析发现,快反镜光轴耦合系统闭环时对28 Hz以内光轴抖动具有较好地抑制作用,在系统开环残差较大的频率段2~6 Hz的抑制比为−40~−30 dB。实验结果表明,该光轴耦合控制系统对平台间光束传输过程中光束抖动具有较好地抑制和稳定效果。
  • 图  1  平台间光束耦合传输示意图

    Figure  1.  Schematic diagram of beam coupling transmission between platforms

    图  2  FSM工作原理

    Figure  2.  FSM Working Principle

    图  3  快反镜结构示意图

    Figure  3.  Schematic diagram of the fast mirror

    图  4  快反镜动态范围仿真

    Figure  4.  Dynamic range simulation of the fast mirror

    图  5  快反镜模态分析

    Figure  5.  Modal analysis of the fast mirror

    图  6  快反镜实物照片

    Figure  6.  The fast mirror

    图  7  光轴和光瞳探测器实物

    Figure  7.  Optical axis and pupil detector

    图  8  控制与驱动系统实物

    Figure  8.  Control and drive system

    图  9  动态范围和线性度测试曲线

    Figure  9.  Dynamic range and linearity curve

    图  10  快反镜阶跃响应曲线

    Figure  10.  Step response curve of the fast mirror

    图  11  快反镜扫频频域响应曲线

    Figure  11.  Sweep frequency response curve of the fast mirror

    图  12  光束耦合传输与控制试验平台

    Figure  12.  Experimental platform for beam coupling transmission and control

    图  13  快反镜耦合系统开/闭环对比曲线

    Figure  13.  Open/closed-loop comparison curve of fast mirror coupling system

    图  14  快反镜耦合系统开/闭环频域特性曲线

    Figure  14.  Open/closed-loop frequency domain characteristic curve of fast mirror coupling system

    Residual power spectral density(μrad*${\rm{Hz}}^{\frac{1}{2}} $)

  • [1] 杨浩, 杨永志. 车载光学平台结构及其优化设计[J]. 光电技术应用, 2019, 34(3):61-64. (Yang Hao, Yang Yongzhi. Structure and optimum design of vehicular optical platform[J]. Electro-Optic Technology Application, 2019, 34(3): 61-64 doi: 10.3969/j.issn.1673-1255.2019.03.015
    [2] 李国会, 欧龙, 谢川林, 等. 基于车载平台的快反镜光轴稳定技术[J]. 激光技术, 2018, 42(4):470-475. (Li Guohui, Ou Long, Xie Chuanlin, et al. Optical axis stabilization technology based on FSM on a vehicle platform[J]. Laser Technology, 2018, 42(4): 470-475 doi: 10.7510/jgjs.issn.1001-3806.2018.04.008
    [3] 应杏娟, 李郝林, 倪争技. 光学平台隔振系统结构参数的优化设计[J]. 上海理工大学学报, 2008, 30(2):197-200. (Ying Xingjuan, Li Haolin, Ni Zhengji. Optimal design of vibration isolation system parameters of an optical table[J]. Journal of University of Shanghai for Science and Technology, 2008, 30(2): 197-200 doi: 10.3969/j.issn.1007-6735.2008.02.022
    [4] 陈超, 宋小全, 夏金宝. 车载多普勒测风激光雷达系统的隔振设计[J]. 大气与环境光学学报, 2012, 7(3):227-234. (Chen Chao, Song Xiaoquan, Xia Jinbao. Vibration isolation design for mobile Doppler wind lidar[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(3): 227-234 doi: 10.3969/j.issn.1673-6141.2012.03.011
    [5] 李新阳, 姜文汉. 两个自适应光学系统串联校正的控制性能分析[J]. 光学学报, 2001, 21(9):1059-1064. (Li Xinyang, Jiang Wenhan. Control performance analysis of the construction of two adaptive optics systems in series[J]. Acta Optica Sinica, 2001, 21(9): 1059-1064 doi: 10.3321/j.issn:0253-2239.2001.09.009
    [6] 季小玲. 大气湍流对激光束传输特性的影响[J]. 四川师范大学学报(自然科学版), 2012, 35(1):127-136. (Ji Xiaolin. Influence of the atmospheric turbulence on propagation properties of laser beams[J]. Journal of Sichuan Normal University (Natural Science), 2012, 35(1): 127-136
    [7] 李晓燕, 张鹏, 佟首峰. 大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析[J]. 中国激光, 2018, 45:0606001. (Li Xiaoyan, Zhang Peng, Tong Shoufeng. Bit error rate performance for modulating retro-reflector free space optical communication system based on adaptive threshold under atmospheric turbulence[J]. Chinese Journal of Lasers, 2018, 45: 0606001 doi: 10.3788/CJL201845.0606001
    [8] Sodink Z, Armengola J P, Czicyb R H, et al. Adaptive optics and ESA’s optical ground station[C]//Proceedings of SPIE, Free-Space Laser Communications IX. 2009: 746406.
    [9] 罗文, 耿超, 李新阳. 大气湍流像差对单模光纤耦合效率的影响分析及实验研究[J]. 光学学报, 2014, 34:0606001. (Luo Wen, Geng Chao, Li Xinyang. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34: 0606001 doi: 10.3788/AOS201434.0606001
    [10] 叶红卫, 李新阳, 鲜浩, 等. 光束漂移误差与长曝光光斑光束质量β因子的关系[J]. 中国激光, 2007, 34(6):809-813. (Ye Hongwei, Li Xinyang, Xian Hao, et al. Relationship between the beam excursion error and the beam quality β factor of long-term exposure spot[J]. Chinese Journal of Lasers, 2007, 34(6): 809-813 doi: 10.3321/j.issn:0258-7025.2007.06.015
    [11] 黄继鹏, 王延杰, 孙宏海, 等. 激光光斑位置精确测量系统[J]. 光学 精密工程, 2013, 21(4):841-848. (Huang Jipeng, Wang Yanjie, Sun Honghai, et al. Precise position measuring system for laser spots[J]. Optics and Precision Engineering, 2013, 21(4): 841-848 doi: 10.3788/OPE.20132104.0841
    [12] 李国会, 杨媛, 何忠武, 等. 四束激光光轴高精度稳定控制技术[J]. 强激光与粒子束, 2014, 26:031009. (Li Guohui, Yang Yuan, He Zhongwu, et al. High accuracy optical axis stable control in beam system of four lasers[J]. High Power Laser and Particle Beams, 2014, 26: 031009 doi: 10.3788/HPLPB20142603.31009
    [13] 于志亮, 王岩, 曹开锐, 等. 压电陶瓷执行器迟滞补偿及复合控制[J]. 光学 精密工程, 2017, 25(8):2113-2120. (Yu Zhiliang, Wang Yan, Cao Kairui, et al. Hysteresis compensation and composite control for piezoelectric actuator[J]. Optics and Precision Engineering, 2017, 25(8): 2113-2120 doi: 10.3788/OPE.20172508.2113
    [14] 姜文汉, 张雨东, 饶长辉, 等. 中国科学院光电技术研究所的自适应光学研究进展[J]. 光学学报, 2011, 31:0900106. (Jiang Wenhan, Zhang Yudong, Rao Changhui, et al. Progress on adaptive optics of institute of optics and electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31: 0900106 doi: 10.3788/AOS201131.0900106
    [15] 田福庆, 李克玉, 王珏, 等. 压电驱动快速反射镜的自适应反演滑模控制[J]. 强激光与粒子束, 2014, 26:011011. (Tian Fuqing, Li Keyu, Wang Jue, et al. Adaptive backstepping sliding mode control of fast steering mirror driven by piezoelectric actuator[J]. High Power Laser and Particle Beams, 2014, 26: 011011 doi: 10.3788/HPLPB20142601.11011
  • 加载中
图(14)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  237
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 修回日期:  2021-04-10
  • 网络出版日期:  2021-04-27
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回