留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HIAF-BRing电源样机模块故障联锁保护系统设计与实现

谭玉莲 吴凤军 王晓俊 燕宏斌 黄玉珍 李雨航 李继强 张帅 张华剑 朱芳芳 高大庆

谭玉莲, 吴凤军, 王晓俊, 等. HIAF-BRing电源样机模块故障联锁保护系统设计与实现[J]. 强激光与粒子束, 2021, 33: 074002. doi: 10.11884/HPLPB202133.210034
引用本文: 谭玉莲, 吴凤军, 王晓俊, 等. HIAF-BRing电源样机模块故障联锁保护系统设计与实现[J]. 强激光与粒子束, 2021, 33: 074002. doi: 10.11884/HPLPB202133.210034
Tan Yulian, Wu Fengjun, Wang Xiaojun, et al. Design and implementation of module fault interlock and protection system of HIAF-BRing power supply prototype[J]. High Power Laser and Particle Beams, 2021, 33: 074002. doi: 10.11884/HPLPB202133.210034
Citation: Tan Yulian, Wu Fengjun, Wang Xiaojun, et al. Design and implementation of module fault interlock and protection system of HIAF-BRing power supply prototype[J]. High Power Laser and Particle Beams, 2021, 33: 074002. doi: 10.11884/HPLPB202133.210034

HIAF-BRing电源样机模块故障联锁保护系统设计与实现

doi: 10.11884/HPLPB202133.210034
基金项目: 国家重点研发计划项目(2019YFA0405402);广东省创新创业团队项目(2016ZT06G373)
详细信息
    作者简介:

    谭玉莲(1993—),女,博士研究生,从事重离子加速器电源研究

    通讯作者:

    高大庆(1969—),男,博士,研究员,从事重离子加速器电源研究

  • 中图分类号: TL503.5

Design and implementation of module fault interlock and protection system of HIAF-BRing power supply prototype

  • 摘要: 强流重离子加速器装置(HIAF)的增强器(BRing)二极铁电源样机采用多模块串并联的全储能快循环脉冲电源实现方案,电源功率达到MW级。由于电源规模庞大和功率巨大,为了在运行中迅速保护电源设备,设计并实现了一套双冗余的基于可编程逻辑控制器(PLC)、模块故障联锁板和现场可编程门阵列(FPGA)的模块故障联锁保护系统,利用硬件和软件同时对电源功率单元模块实施故障检测、故障传递和故障保护。设计完成后分别从电源联锁环路的响应时间、核心控制板故障引发电源环路联锁的总时间和设备故障响应等三个方面进行测试,测试结果表明,在电源发生故障时,模块故障联锁保护系统满足电源样机对实时性和可靠性的要求,达到设计目标。
  • 图  1  HIAF-BRing电源样机拓扑结构图

    Figure  1.  Topology of HIAF-BRing power supply prototype

    图  2  双冗余模块故障联锁设计

    Figure  2.  Design of double redundant module fault interlock

    图  3  模块故障联锁板原理图

    Figure  3.  Schematic of module fault interlock board

    图  4  数字控制器一个支路控制结构图

    Figure  4.  One branch of digital controller

    图  5  PLC故障保护机制

    Figure  5.  Protection mechanism in PLC

    图  6  PLC复位联锁重建时序图

    Figure  6.  Sequence diagram of interlock reestablish after resetting in PLC

    图  7  核心控制板故障处理时序图

    Figure  7.  Sequence diagram of fault handling in main control board

    图  8  数字控制器故障保护机制

    Figure  8.  Protection mechanism in digital controller

    图  9  核心控制器复位重建时序图

    Figure  9.  Sequence diagram of interlock reestablish after resetting in main control board

    图  10  现场测试及实物图

    Figure  10.  Photoes of test equipment and interlock board

    图  11  电源联锁环路响应时间

    Figure  11.  Response time of power supply interlock loop

    图  12  故障联锁单板的响应时间

    Figure  12.  Response time of single interlock board

    图  13  数字控制器故障时后引发电源环路联锁总时间

    Figure  13.  Total time from digital controller error occurrence to interlock finish

    表  1  各大工程设备联锁保护系统的实现方案

    Table  1.   Implementation of interlock protection system for major facility

    facilitykernelresponse time/μs
    protection of the resonant power supply in CSNS/RCS
    interlock system for SXFEL
    high voltage power supply protection in EAST-NBI
    PLC
    PLC & EPICS
    DSP, compare circuits & LabVIEW
    16 000
    15 000
    2 600
    fast interlock system in SSRFFPGA & ARM34
    下载: 导出CSV

    表  2  PLC检测的故障

    Table  2.   Fault detected by PLC

    faultquantity of one unittotal amount of power supply prototype
    cooling water fault 1 16
    safeguard fault 1 16
    main circuit fault 1 15
    soft start fault 1 15
    fuse fault 1 15
    over temperature fault of transformer 1 15
    emergency stop 1 16
    external fault 4 64
    over temperature fault of H bridge radiator 1 15
    over temperature of output inductor 1 15
    IGBT fault of H bridge 2 30
    over temperature fault of capacitor bank 1 12
    module interlock fault 1 or 2 17
    下载: 导出CSV

    表  3  核心控制板检测的故障

    Table  3.   Fault detected by main control board

    faultquantity
    SFP fault3
    RS485 fault1
    ADC synchronous light fault3
    IGBT fault (light)75
    power on fault16
    over output current fault1
    over branch current fault3
    over bus voltage fault15
    module interlock fault (light)1
    下载: 导出CSV

    表  4  高速采集板检测的故障

    Table  4.   Fault detected by acquisition board

    faultquantity of one boardtotal amount
    SFP fault227
    RS485 fault115
    ADC synchronous light fault115
    下载: 导出CSV
  • [1] Yang J C, Xia J W, Xiao G Q, et al. High intensity heavy ion accelerator facility (HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 263-265. doi: 10.1016/j.nimb.2013.08.046
    [2] Ruan S, Yang J C, Zhang J Q, et al. Design of extraction system in BRing at HIAF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 892: 53-58.
    [3] 高大庆, 周忠祖, 吴凤军, 等. 强流重离子加速器装置电源预研及进展[J]. 原子能科学技术, 2019, 53(10):2048-2054. (Gao Daqing, Zhou Zhongzu, Wu Fengjun, et al. R & D progress of HIAF power supply system[J]. Atomic Energy Science and Technology, 2019, 53(10): 2048-2054
    [4] Wu F J, Gao D Q, Shi C F, et al. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 826: 1-5.
    [5] 王冠文, 张旌, 齐欣, 等. 基于PLC的谐振电源保护系统设计及实现[J]. 核技术, 2017, 40:060401-60401. (Wang Guanwen, Zhang Jing, Qi Xin, et al. Design and realization of the PLC based protection system for resonant power supply[J]. Nuclear Techniques, 2017, 40: 060401-60401
    [6] 于春蕾, 赵欢, 丁建国. 上海软X射线自由电子激光装置联锁保护系统[J]. 原子能科学技术, 2018, 52(4):756-761. (Yu Chunlei, Zhao Huan, Ding Jianguo. Interlock system for soft X-ray free-electron laser in Shanghai[J]. Atomic Energy Science and Technology, 2018, 52(4): 756-761 doi: 10.7538/yzk.2017.youxian.0396
    [7] 赵璐, 潘圣民, 黄懿赟, 等. EAST中性束注入高压电源综合保护系统[J]. 强激光与粒子束, 2017, 29:065010. (Zhao Lu, Pan Shengmin, Huang Yiyun, et al. Integrated protection system of EAST-NBI high voltage power supply[J]. High Power Laser and Particle Beams, 2017, 29: 065010 doi: 10.11884/HPLPB201729.160452
    [8] 刘鑫, 蒋舸扬, 沈立人, 等. 基于FPGA和ARM的控制器设计及在快联锁保护系统中的应用[J]. 核技术, 2010, 33(9):653-656. (Liu Xin, Jiang Geyang, Shen Liren, et al. Design of a controller based on FPGA & ARM and its application in the SSRF fast interlock system[J]. Nuclear Techniques, 2010, 33(9): 653-656
    [9] 李海荣, 蒋舸扬, 金林, 等. 质子治疗装置动态电源控制系统研发[J]. 强激光与粒子束, 2020, 32:045108. (Li Hairong, Jiang Geyang, Jin Lin, et al. Development of dynamic power control system in proton therapy facility[J]. High Power Laser and Particle Beams, 2020, 32: 045108
    [10] 谢希仁. 计算机网络[M]. 北京: 电子工业出版社, 2017.

    Xie Xiren. Computer network[M]. Beijing: Publishing House of Electronics Industry, 2017
    [11] 郑亮, 蒋大明, 戴胜华. PLC可靠性分析与冗余设计[J]. 工矿自动化, 2005, 2:58-59. (Zheng Liang, Jiang Daming, Dai Shenghua. Reliability analysis and redundancy design of PLC[J]. Industry and Mine Automation, 2005, 2: 58-59 doi: 10.3969/j.issn.1671-251X.2005.02.022
    [12] 清华大学电子学教研组, 童诗白, 华成英. 模拟电子技术基础[M]. 北京: 高等教育出版社, 2015.

    Electronics Teaching and Research Group of Tsinghua University, Tong Shibai, Hua Chengying. Fundamentals of analog electronic technology[M]. Beijing: Higher Education Press, 2015
    [13] 张万忠. 可编程控制器应用技术[M]. 北京: 化学工业出版社, 2005.

    Zhang Wanzhong. Application technology of PLC[M]. Beijing: Chemical Industry Press, 2005
    [14] 夏宇闻. Verilog数字系统设计教程[M]. 北京: 北京航空航天大学出版社, 2013.

    Xia Yuwen. Verilog digital system design course[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2013
    [15] 王兆安, 刘进军. 电力电子技术[M]. 北京: 机械工业出版社, 2009.

    Wang Zhaoan, Liu Jinjun. Power electronic technology[M]. Beijing: China Machine Press, 2009
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  238
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回