留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温二次电子产额测试系统设计与研究

方键威 洪远志 王一刚 尉伟 朱邦乐 葛晓琴 卞抱元 张文丽 王勇

方键威, 洪远志, 王一刚, 等. 低温二次电子产额测试系统设计与研究[J]. 强激光与粒子束, 2021, 33: 074003. doi: 10.11884/HPLPB202133.210035
引用本文: 方键威, 洪远志, 王一刚, 等. 低温二次电子产额测试系统设计与研究[J]. 强激光与粒子束, 2021, 33: 074003. doi: 10.11884/HPLPB202133.210035
Fang Jianwei, Hong Yuanzhi, Wang Yigang, et al. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33: 074003. doi: 10.11884/HPLPB202133.210035
Citation: Fang Jianwei, Hong Yuanzhi, Wang Yigang, et al. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33: 074003. doi: 10.11884/HPLPB202133.210035

低温二次电子产额测试系统设计与研究

doi: 10.11884/HPLPB202133.210035
基金项目: 国家自然科学基金项目(11975226)
详细信息
    作者简介:

    方键威(1996—),男,硕士,从事粒子加速器低温二次电子相关研究

    通讯作者:

    尉 伟(1972—),男,副教授,从事粒子加速器结构设计、真空薄膜研究

    王 勇(1958—),男,教授,从事粒子加速器结构设计、真空薄膜、二次电子研究

  • 中图分类号: TL503.7; TL503.92

Design and establishment of cryogenic secondary electron yield measurement system

  • 摘要: 在合肥先进光源(HALF)建设中,由低温超导材料组成的真空部件被大量使用,尤其是超导高频腔。超导腔以高加速梯度、低束流阻抗、高无载品质因数和低运行成本等特点,成为21世纪国际上拟建的大型加速器的首选。而超导腔和低温真空室内表面的二次电子发射可能会引发电子云(EC)现象。超剂量的二次电子倍增功率沉积会引起低温区域热负载增加、超导腔失超等现象,因此降低超导高频腔内二次电子发射成为合肥先进光源设计过程中的巨大挑战。在常温材料二次电子产额(SEY)测试系统的基础上,作者自主研发设计低温样品架结构,使液氦流经样品台并通过热传导冷却样品,计算漏热来反推所需要的制冷量和液氦的消耗速率。在系统集成调试后进行降温性能测试,搭建了低温材料二次电子测试系统。
  • 图  1  低温SEY原理示意图

    Figure  1.  Schematic diagram of the cryogenic SEY test

    图  2  高精度材料二次电子测试系统

    Figure  2.  High precision secondary electron testing system for material

    图  3  低温样品架

    Figure  3.  Cryogenic sample rack

    图  4  降温性能测试曲线

    Figure  4.  Cooling performance test curve

  • [1] Tang Y G, Wu C F, Wang L. Preliminary research of HOM for 100 MHz superconducting cavity in the pre-research project of HALS[J]. Journal of Physics: Conference Series, 2019, 1350: 012017. doi: 10.1088/1742-6596/1350/1/012017
    [2] 温华明, 严陆光, 林良真. 超导在加速器中的应用概况[J]. 低温与超导, 2005, 33(1):46-49. (Wen Huaming, Yan Liuguang, Lin Liangzhen. Status of Superconductivity in large-scale particle accelerators[J]. Cryogenics And Superconductivity, 2005, 33(1): 46-49 doi: 10.3969/j.issn.1001-7100.2005.01.011
    [3] Padamsee H, Knobloch J, Hays T, et al. RF superconductivity for accelerators[J]. Physics Today, 1999, 52(7): 54.
    [4] 李欣, 陈强, 辛天牧, 等. 射频超导腔加速性能的改进[J]. 强激光与粒子束, 2006, 18(9):1581-1584. (Li Xin, Chen Qiang, Xin Tianmu, et al. Performance improvement of RF superconducting cavity[J]. High Power Laser and Particle Beams, 2006, 18(9): 1581-1584
    [5] Valizadeh R, Malyshev O B, Wang S H, et al. Low secondary electron yield engineered surface for electron cloud mitigation[J]. Applied Physics Letters, 2014, 105: 231605. doi: 10.1063/1.4902993
    [6] 郝建红, 丁武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象[J]. 物理学报, 2006, 55(9):4789-4794. (Hao Jianhong, Ding Wu, Dong Zhiwei. Moltipactor discharge in a magnetically insulated transmission line oscillator[J]. Acta Physica Sinica, 2006, 55(9): 4789-4794 doi: 10.3321/j.issn:1000-3290.2006.09.067
    [7] Price D, Benford J N. General scaling of pulse shortening in explosive-emission-driven microwave sources[J]. Plasma Science IEEE Transactions on, 1998, 26(3): 256-262. doi: 10.1109/27.700752
    [8] Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Physical Review Letters, 2004, 93(1): 6855-6855.
    [9] Ye M, He Y N, Hu S G, et al. Suppression of secondary electron yield by micro-porous array structure[J]. Journal of Applied Physics, 2013, 113: 074904. doi: 10.1063/1.4792514
    [10] 何鋆, 杨晶, 苗光辉, 等. 高性能多功能介质二次电子发射特性研究平台[J]. 强激光与粒子束, 2020, 32:033003. (He Yun, Yang Jing, Miao Guanghui, et al. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32: 033003
    [11] Kijima Y, Saito Y, Furuya T, et al. The secondary electron emission coefficient of the material for the superconducting cavity input coupler[J]. Shinku, 2002, 45(7): 599-603. doi: 10.3131/jvsj.45.599
    [12] Noer R, College C, Northfield, et al. Secondary electron yield of NB RF cavity surfaces[C]//The 10th Workshop on RF Superconductivity. 2001: 400-402.
    [13] Kuzucan A, Stri H, Taborelli M. Secondary electron yield on cryogenic surfaces as a function of physisorbed gases[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012, 30: 051401.
    [14] Spallino L, Angelucci M, Larciprete R, et al. On the compatibility of porous surfaces with cryogenic vacuum in future high-energy particle accelerators[J]. Applied Physics Letters, 2019, 114: 153103. doi: 10.1063/1.5085754
    [15] Spallino L. Material properties compliance with cryogenic vacuum for particle accelerators[J]. Journal of Vacuum Science & Technology B, 2020, 38: 032803.
    [16] Calder R, Grobner O, Mathewson A G, et al. Synchrotron radiation induced gas desorption from a Prototype Large Hadron Collider beam screen at cryogenic temperatures[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 1996, 14(4): 2618-2623.
  • 加载中
图(4)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  434
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 修回日期:  2021-06-15
  • 网络出版日期:  2021-06-30
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回