留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面曝光选区激光熔化成形形状精度研究

王开甲 沈显峰 王国伟 王晨光 陈金明 刘宁昭 吴华玲

王开甲, 沈显峰, 王国伟, 等. 面曝光选区激光熔化成形形状精度研究[J]. 强激光与粒子束, 2021, 33: 059001. doi: 10.11884/HPLPB202133.210039
引用本文: 王开甲, 沈显峰, 王国伟, 等. 面曝光选区激光熔化成形形状精度研究[J]. 强激光与粒子束, 2021, 33: 059001. doi: 10.11884/HPLPB202133.210039
Wang Kaijia, Shen Xianfeng, Wang Guowei, et al. Investigation on shape precision of surface exposure selective laser melting[J]. High Power Laser and Particle Beams, 2021, 33: 059001. doi: 10.11884/HPLPB202133.210039
Citation: Wang Kaijia, Shen Xianfeng, Wang Guowei, et al. Investigation on shape precision of surface exposure selective laser melting[J]. High Power Laser and Particle Beams, 2021, 33: 059001. doi: 10.11884/HPLPB202133.210039

面曝光选区激光熔化成形形状精度研究

doi: 10.11884/HPLPB202133.210039
基金项目: 四川省科技计划项目(2018GZ0535)
详细信息
    作者简介:

    王开甲(1995—),男,硕士研究生,从事金属选区激光熔化增材制造方面的研究工作

    通讯作者:

    沈显峰(1977—),男,博士,高级工程师,从事高能束流加工技术方面的研究工作

  • 中图分类号: TN249

Investigation on shape precision of surface exposure selective laser melting

  • 摘要: 主要研究面曝光选区激光熔化单层成形时,激光光斑搭接率和电流对形状精度的影响。实验通过控制变量法研究搭接率、曝光时间、电流等工艺参数对激光光斑、熔道、圆环、尖角等成形形状精度的影响。实验结果表明:一定范围内,电流越大,激光光斑更均匀,成形一致性更好;搭接率38.4%能够获得最低的形状误差的熔道;搭接率一定,圆环成形误差随电流的增加而增加;尖角成形误差随着电流增加,呈现先增后减的趋势;搭接率为46.1%、38.4%时,零级衍射带来的形状误差降低。
  • 图  1  面曝光选区激光熔化实验装置示意图

    Figure  1.  Schematic diagram of experimental device for surface exposure selective laser melting

    图  2  两熔道搭接示意图

    Figure  2.  Schematic diagram of two-track overlapping

    图  3  激光子光斑搭接示意图

    Figure  3.  Schematic diagram of overlapping of laser beamlet

    图  4  形状精度的表征树状图

    Figure  4.  Representation tree of shape accuracy

    图  5  激光光斑测试图

    Figure  5.  Laser spot test chart

    图  6  激光光斑搭接图

    Figure  6.  Laser spot overlap image

    图  7  熔道、圆环、尖角测试图

    Figure  7.  Test drawings of track, circular ring and sharp angle

    图  8  零级衍射产生示意图

    Figure  8.  Schematic diagram of the causes of zero-order diffraction

    图  9  线框及零级衍射光斑

    Figure  9.  Wireframe and zero-order diffraction spot

    图  10  激光光斑形貌

    Figure  10.  Laser spot shape

    图  11  功率、曝光时间对光斑直径影响

    Figure  11.  Influence of laser power and exposure time on spot diameter

    图  12  激光功率对$ {D}_{{\rm{D}}} $影响

    Figure  12.  Influence of laser power on $ {D}_{{\rm{D}}} $

    图  13  不同搭接率的熔道

    Figure  13.  Tracks with different overlap rates

    图  14  激光功率、搭接率对$ {D}_{{\rm{L}}} $,,$ {D}_{{\rm{B}}} $影响

    Figure  14.  Influence of laser power and lap rate on $ {D}_{{\rm{L}}} $, $ {D}_{{\rm{B}}} $

    图  15  激光功率对成形圆环的影响

    Figure  15.  Effect of laser power on forming circular ring

    图  16  激光功率对成形尖角的影响

    Figure  16.  Effect of laser power on forming sharp angle

    表  1  激光光斑形状精度实验表

    Table  1.   Experimental scheme of laser spot size accuracy test table

    exposure time/s current/A
    0.1 0.05
    0.2 0.10
    0.3 0.15
    0.4 0.20
    0.5 0.25
    0.6 0.30
    下载: 导出CSV

    表  2  激光功率、搭接率对熔道影响

    Table  2.   Influence of laser power and overlap rate on track

    current/A53.8%46.1%38.4%30.7%23%
    1


    2


    3


    4
    下载: 导出CSV

    表  3  圆环成形实验结果

    Table  3.   Experimental results of circular ring forming

    current/A92.3%53.8%46.1%38.4%
    2
    3
    4
    5
    6
    下载: 导出CSV

    表  4  成形角度实验结果

    Table  4.   Experimenta results of forming sharp angle

    current/A92.3%53.8%46.1%38.4%
    1
    2
    3
    4
    5
    6
    下载: 导出CSV

    表  5  线框成形实验

    Table  5.   Results of wireframe forming experiments

    current/A92.3%53.8%46.1%38.4%
    6



    7



    8
    zero-order diffraction light spot
    下载: 导出CSV
  • [1] Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2015, 2: 041101. doi: 10.1063/1.4935926
    [2] Zavala-Arredondo M, Boone N, Willmott J, et al. Laser diode area melting for high speed additive manufacturing of metallic components[J]. Materials & Design, 2017, 117: 305-315.
    [3] Matthews M J, Guss G, Drachenberg D R, et al. Diode-based additive manufacturing of metals using an optically-addressable light valve[J]. Optics express, 2017, 25(10): 11788-11800. doi: 10.1364/OE.25.011788
    [4] Zavala-Arredondo M, Groom K M, Mumtaz K. Diode area melting single-layer parametric analysis of 316L stainless steel powder[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 2563-2576.
    [5] 王晨光, 沈显峰, 王国伟, 等. 金属面曝光选区激光熔化原理装置及试验研究[J]. 强激光与粒子束, 2021, 33:029001. (Wang Chenguang, Shen Xianfeng, Wang Guowei, et al. Principle device and experimental research of surface exposure selective laser melting for metal powder[J]. Power Laser and Particle Beams, 2021, 33: 029001
    [6] Kamarudin K, Wahab M S, Raus A A, et al. Benchmarking of dimensional accuracy and surface roughness for AlSi10Mg part by selective laser melting (SLM)[C]//American Institute of Physics Conference Series. 2017.
    [7] 杨雄文. 激光选区熔化成型件尺寸精度研究及在免组装机构直接制造中的应用[D]. 华南理工大学, 2015.

    Yang Xiongwen. Study on dimensional accuracy of parts manufactured by selective laser melting and its application in manufacturing non-assembly mechanisms directly[D]. South China University of Technology, 2015
    [8] 陈光霞, 王泽敏, 关凯, 等. 工艺参数对SLM激光快速成型件表面粗糙度的影响[J]. 制造技术与机床, 2009(12):86-89. (Chen Guangxia, Wang Zemin, Guan Kai, et al. Effects of parameters on surface roughness of samples by selective laser melting[J]. Manufacturing Technology & Machine Tool, 2009(12): 86-89 doi: 10.3969/j.issn.1005-2402.2009.12.029
    [9] Zhao Yu, Yu Tianbiao, Sun Jiayu, et al. Effect of laser cladding on forming microhardness and tensile strength of YCF101 alloy powder in the different full lap joint modes[J]. Journal of Alloys and Compounds, 2020, 820: 150230. doi: 10.1016/j.jallcom.2019.04.046
    [10] Presotto A G C, Barão V A R, Bhering C L B, et al. Dimensional precision of implant-supported frameworks fabricated by 3D printing[J]. The Journal of Prosthetic Dentistry, 2019, 122(1): 38-45. doi: 10.1016/j.prosdent.2019.01.019
    [11] Lin Liu, Li Lin, Zhao Zhu, et al. A remote laser focusing system with spatial light modulator[J]. Computer Communications, 2020, 154: 92-98. doi: 10.1016/j.comcom.2020.01.075
    [12] 祁斌, 刘玉德, 石文天, 等. 脉冲式激光选区熔化成形搭接率的研究[J]. 激光技术, 2018, 42(3):311-317. (Qi Bin, Liu Yude, Shi Wentian, et al. Study on overlap ratio of pulse laser selective melting forming[J]. Laser Technology, 2018, 42(3): 311-317
    [13] Uhlmann Eckart, Saber Yassin. Conceptualization of a measurement procedure for determination of characteristic properties of SLM produced parts by means of computed tomography[J]. Procedia Manufacturing, 2020, 47: 1016-1022. doi: 10.1016/j.promfg.2020.04.312
    [14] Guo Meng, Gu Dongdong, Xi Lixia, et al. Formation of scanning tracks during selective laser melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms[J]. International Journal of Refractory Metals and Hard Materials, 2018, 79: 37-46.
    [15] Liu Ning, Yang Chao. The elimination of zero-order diffraction of 10.6 μm infrared digital holography[J]. Infrared Physics and Technology, 2017, 82: 133-139. doi: 10.1016/j.infrared.2017.03.010
    [16] Yurlov V, Lapchuk A, Sang K Y, et al. A study of image contrast restriction in displays using diffractive spatial light modulators[J]. Displays, 2010, 31(1): 15-24. doi: 10.1016/j.displa.2009.09.005
    [17] Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 2000, 71(5): 1929-1960. doi: 10.1063/1.1150614
    [18] Li Nannan, Wang Di, Liu Chao, et al. Large-size holographic display method based on effective utilization of two spatial light modulators[J]. Optics Communications, 2019, 453: 124311. doi: 10.1016/j.optcom.2019.07.073
    [19] Moreno I, Gutierrez B K, Sánchez-López M M, et al. Diffraction efficiency of stepped gratings using high phase-modulation spatial light modulators[J]. Optics and Lasers in Engineering, 2019, 126: 105910.
    [20] Li Sensen, Lu Zhiwei, Wang Yulei, et al. Spatial beam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator[J]. Optics Communications, 2016, 367: 181-185. doi: 10.1016/j.optcom.2016.01.050
    [21] Wischeropp T M, Emmelmann C, Brandt M, et al. Measurement of actual powder layer height and packing density in a single layer in selective laser melting[J]. Additive Manufacturing, 2019, 28: 176-183. doi: 10.1016/j.addma.2019.04.019
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  936
  • HTML全文浏览量:  221
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回