留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频率选择表面结构的电子系统K/Ka波段电磁屏蔽分析

沈宁 闫丽萍 谷智渊 赵翔

沈宁, 闫丽萍, 谷智渊, 等. 频率选择表面结构的电子系统K/Ka波段电磁屏蔽分析[J]. 强激光与粒子束, 2021, 33: 053006. doi: 10.11884/HPLPB202133.210043
引用本文: 沈宁, 闫丽萍, 谷智渊, 等. 频率选择表面结构的电子系统K/Ka波段电磁屏蔽分析[J]. 强激光与粒子束, 2021, 33: 053006. doi: 10.11884/HPLPB202133.210043
Shen Ning, Yan Liping, Gu Zhiyuan, et al. Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band[J]. High Power Laser and Particle Beams, 2021, 33: 053006. doi: 10.11884/HPLPB202133.210043
Citation: Shen Ning, Yan Liping, Gu Zhiyuan, et al. Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band[J]. High Power Laser and Particle Beams, 2021, 33: 053006. doi: 10.11884/HPLPB202133.210043

频率选择表面结构的电子系统K/Ka波段电磁屏蔽分析

doi: 10.11884/HPLPB202133.210043
基金项目: 国家自然科学基金项目(61877041);成都市科技项目(2020-GH02-00061-HZ)
详细信息
    作者简介:

    沈 宁(1997—),女,硕士研究生,主要从事电磁屏蔽和计算电磁学方面的研究

    通讯作者:

    闫丽萍(1972—),女,教授,主要从事电磁兼容建模分析与电磁环境效应评估方面的研究

  • 中图分类号: O441.4

Electromagnetic shielding analysis of electronic systems containing frequency selective surface structure in K/Ka band

  • 摘要: 电子设备和无线技术不断向K/Ka波段发展以及电子系统集成度的不断提高给电子系统的电磁屏蔽设计带来了严峻挑战。提出一种将频率选择表面(FSS)用于电子系统屏蔽的新方法,可以替代传统散热孔阵,在满足通风散热性能的同时确保电子系统在5G毫米波段的电磁屏蔽性能。基于金属腔中心点屏蔽效能和全局屏蔽效能,分析了FSS孔阵排布方式、电磁波极化与入射角度对金属外壳电磁屏蔽效能(SE)的影响。结果表明:FSS孔阵排布方式对金属腔屏蔽性能的影响较小,并且SE不受入射电磁波极化方式影响;含FSS通风孔阵的金属外壳在23.0~25.5 GHz范围内屏蔽效能约为30 dB,比含传统散热孔阵金属腔屏蔽效能提高15 dB。
  • 图  1  FSS的单元结构

    Figure  1.  Structure of the FSS unit cell

    图  2  含FSS结构的金属腔计算模型

    Figure  2.  Calculation model of an enclosure with FSS panel

    图  3  含FSS金属腔与传统金属腔CSE对比

    Figure  3.  Comparison of CSE between enclosure with FSS and conventional metallic enclosure

    图  4  四种RVS情况下含FSS金属腔与传统金属腔的CSE对比

    Figure  4.  Comparison of CSE between enclosure with FSS and conventional metallic enclosure under four RVS conditions

    图  5  四种不同FSS孔阵长宽比下金属腔CSE对比

    Figure  5.  Comparison of CSE for the metallic enclosure with four different RLW of FSS

    图  6  孔阵在腔壁的四种位置分布

    Figure  6.  Four kinds of positions distribution of the vent hole array on the enclosure surface

    图  7  孔阵位于腔壁不同位置时屏蔽效能的比较

    Figure  7.  Comparison of shielding effectiveness for different positions of FSS panel

    图  8  不同极化电磁波照射下含FSS金属腔与传统金属腔的CSE对比

    Figure  8.  Comparison of CSE between enclosure with FSS and conventional metallic enclosure with respect to the polarization of electromagnetic wave

    图  9  不同电磁波入射角度下含FSS金属腔与传统金属腔的CSE对比

    Figure  9.  Comparison of CSE between enclosure with FSS and conventional metallic enclosure with respect to the incidence of electromagnetic wave

    表  1  含FSS金属腔与传统金属腔GSE对比

    Table  1.   Comparison of GSE between the enclosure with FSS and the conventional metallic enclosure

    f/GHz GSEFSS/dB GSEPEC/dB
    22 25.04 23.04
    24 31.41 13.57
    26 28.98 13.67
    28 16.77 20.44
    30 5.36 16.52
    下载: 导出CSV

    表  2  四种RVS情况下含FSS金属腔与传统金属腔体的GSE对比

    Table  2.   Comparison of GSE between enclosure with FSS and conventional metallic enclosure under four RVS conditions

    f/GHzGSE/dB
    RVS=20 % RVS=40 % RVS=60 % RVS=80 %
    FSSPECFSSPECFSSPECFSSPEC
    22 25.04 23.04 20.23 18.86 18.26 19.17 27.38 17.54
    24 31.41 13.57 30.77 17.68 31.73 13.9 33.66 18.46
    26 28.98 13.67 30.29 11.17 19.35 15.21 15.19 7.73
    28 16.77 20.44 7.99 19.78 13.01 19.38 13.44 15.69
    30 5.36 16.52 1.70 17.24 0.63 17.1 −0.20 16.42
    下载: 导出CSV

    表  3  四种不同FSS孔阵长宽比下金属腔的GSE对比

    Table  3.   Comparison of GSE for the metallic enclosure with four different RLW of FSS

    f/GHzGSE/dB
    RLW=1.0RLW=1.5RLW=2.0RLW=2.5
    2232.0222.8324.3425.04
    2434.1835.3333.5531.41
    2627.1327.8424.6528.98
    2813.4115.1513.9516.77
    302.825.33.995.36
    下载: 导出CSV

    表  4  孔阵位于腔壁不同位置时的全局屏蔽效能

    Table  4.   Global shielding effectiveness of the enclosure for different positions of FSS panel

    f/GHzGSE/dB
    upper-middlecenterupper-leftcenter-left
    2214.7722.8313.3521.22
    2432.3435.3333.4534.39
    2626.3227.8423.0927.53
    2812.9215.1513.8417.82
    303.785.302.433.93
    下载: 导出CSV
  • [1] Celozzi S, Araneo R, Lovat G. Electromagnetic shielding[M]. Hoboken: John Wiley and Sons, 2008.
    [2] Paul C R. Introduction to electromagnetic compatibility[M]. Hoboken: John Wiley and Sons, 2006.
    [3] 范颖鹏, 杜正伟, 龚克. 不同形状孔阵屏蔽效应的分析[J]. 强激光与粒子束, 2004, 16(11):1441-1444. (Fan Yingpeng, Du Zhengwei, Gong Ke. Analysis of shielding effect of different shape hole array[J]. High Power Laser and Particle Beams, 2004, 16(11): 1441-1444
    [4] 吴刚, 邵小亮, 孙靖虎, 等. 有孔双层矩形金属机壳屏蔽效能[J]. 强激光与粒子束, 2015, 27:103219. (Wu Gang, Shao Xiaoliang, Sun Jinghu, et al. Shielding effectiveness of double-layer rectangular metal enclosure with holes[J]. High Power Laser and Particle Beams, 2015, 27: 103219 doi: 10.11884/HPLPB201527.103219
    [5] 罗静雯, 杜平安, 任丹, 等. 基于BLT方程的双层腔体屏蔽效能计算方法[J]. 强激光与粒子束, 2015, 27:113201. (Luo Jingwen, Du Ping 'an, Ren Dan, et al. Calculation method of shielding effectiveness of double-layer enclosure based on BLT equation[J]. High Power Laser and Particle Beams, 2015, 27: 113201 doi: 10.11884/HPLPB201527.113201
    [6] 程二威, 陈亚洲, 刘卫东, 等. 无人机外壳屏蔽效能测试方法[J]. 强激光与粒子束, 2017, 29:113201. (Cheng Erwei, Chen Yazhou, Liu Weidong, et al. Test method of shielding effectiveness of UAV enclosure[J]. High Power Laser and Particle Beams, 2017, 29: 113201 doi: 10.11884/HPLPB201729.170208
    [7] 刘筝阳, 闫丽萍, 赵翔. 基于机器学习的开孔加载金属腔电磁屏蔽效能评估[J]. 强激光与粒子束, 2019, 31:083201. (Liu Zhengyang, Yan Liping, Zhao Xiang. Evaluation of electromagnetic shielding effectiveness of open hole loaded metal enclosure based on machine learning[J]. High Power Laser and Particle Beams, 2019, 31: 083201 doi: 10.11884/HPLPB201931.190079
    [8] Flintoft I D, Parker S L, Bale S J. Measured average absorption cross-sections of printed circuit boards from 2 to 20 GHz[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 553-560. doi: 10.1109/TEMC.2016.2515658
    [9] 王坦, 何天琦. 5G毫米波焦点频段(26 GHz)全球研究动态与展望[J]. 电讯技术, 2018, 58(3):356-362. (Wang Tan, He Tianqi. 5G millimeter wave focus band (26 GHz) global research trends and prospects[J]. Telecommunications Technology, 2018, 58(3): 356-362 doi: 10.3969/j.issn.1001-893x.2018.03.020
    [10] Aghabarati A, Moini R, Fortin S, et al. Electromagnetic shielding analysis of spherical polyhedral structures generated by conducting wires and metallic surfaces[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(4): 1285-1293. doi: 10.1109/TEMC.2017.2670499
    [11] Sampath S S, Sivasamy R, Kumar K J J. A novel miniaturized polarization independent band-stop frequency selective surface[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1678-1681. doi: 10.1109/TEMC.2018.2869664
    [12] Li Da, Li Tianwu, Zhang Yaojiang, et al. A 2.5-D angularly stable frequency selective surface using via-based structure for 5G EMI shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(3): 768-775. doi: 10.1109/TEMC.2017.2748566
    [13] Sivasamy R, Murugasamy L, Kanagasabai M, et al. A low-profile paper substrate-based dual-band FSS for GSM shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 611-614. doi: 10.1109/TEMC.2015.2498398
    [14] 许留留, 闫丽萍, 赵翔. 适用于5G电磁屏蔽的介质开孔型频率选择表面设计[J]. 太赫兹科学与电子信息学报, 2019, 17(4):616-620. (Xu Liuliu, Yan Lipin, Zhao Xiang. A dielectric open-hole frequency selective surface design for 5G electromagnetic shielding[J]. Journal of Terahertz Science and Electronic Information, 2019, 17(4): 616-620 doi: 10.11805/TKYDA201904.0616
    [15] Celozzi S. New figures of merit for the characterization of the performance of shielding enclosures[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(1): 142. doi: 10.1109/TEMC.2004.823627
    [16] Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  391
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回