留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁屏蔽用低频比小型化双频带频率选择表面

张靖晗 闫丽萍 黄钰 赵翔

张靖晗, 闫丽萍, 黄钰, 等. 电磁屏蔽用低频比小型化双频带频率选择表面[J]. 强激光与粒子束, 2021, 33: 053005. doi: 10.11884/HPLPB202133.210044
引用本文: 张靖晗, 闫丽萍, 黄钰, 等. 电磁屏蔽用低频比小型化双频带频率选择表面[J]. 强激光与粒子束, 2021, 33: 053005. doi: 10.11884/HPLPB202133.210044
Zhang Jinghan, Yan Liping, Huang Yu, et al. A miniaturized dual-band frequency selective surface with low frequency ratio for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2021, 33: 053005. doi: 10.11884/HPLPB202133.210044
Citation: Zhang Jinghan, Yan Liping, Huang Yu, et al. A miniaturized dual-band frequency selective surface with low frequency ratio for electromagnetic shielding[J]. High Power Laser and Particle Beams, 2021, 33: 053005. doi: 10.11884/HPLPB202133.210044

电磁屏蔽用低频比小型化双频带频率选择表面

doi: 10.11884/HPLPB202133.210044
基金项目: 国家自然科学基金项目(61877041);成都市科技项目(2020-GH02-00061-HZ)
详细信息
    作者简介:

    张靖晗(1996—),女,硕士,主要从事应用于电磁屏蔽的频率选择表面的研究

    通讯作者:

    闫丽萍(1972—),女,教授,主要从事电磁兼容建模分析与电磁效应评估方面的研究

  • 中图分类号: TN03

A miniaturized dual-band frequency selective surface with low frequency ratio for electromagnetic shielding

  • 摘要: 为满足敏感电子设备对频段密集相邻干扰信号的屏蔽需求,提出了一种低频比双频段带阻频率选择表面(FSS)结构。该结构由介质层和印刷在其两侧并谐振在不同频率的金属导带层构成。通过对两侧金属导带的互补型设计,削弱了两个谐振点间的耦合影响,使该FSS结构具有两个可以独立调节且紧密相邻的阻带,呈现出低频比特点。仿真结果表明,此结构可以实现低至1.16的谐振频率比。基于弯折结构的小型化设计使该FSS的单元尺寸仅为0.071λ,确保所提结构在TE和TM两种极化电磁波照射下,电磁屏蔽效能大于24 dB的入射角度稳定性高达60°。制作了实物并进行测试,实测结果与仿真结果吻合良好,验证了FSS结构设计的可靠性。
  • 图  1  互补型FSS的单元结构图

    Figure  1.  Unit cell structure of the double-layer complementary FSS

    图  2  互补型FSS结构透视图

    Figure  2.  The perspective view of the proposed FSS

    图  3  FSS结构在垂直入射下仿真的到的|S21|值

    Figure  3.  Simulated |S21| of FSS for normal incidence

    图  4  优化FSS的单元结构图

    Figure  4.  Unit cell structure of the optimized FSS

    图  5  优化后FSS结构在垂直入射下仿真的到的|S21|值

    Figure  5.  Simulated |S21| of optimized FSS for normal incidence

    图  6  原始FSS结构在不同极化方式下入射角度对屏蔽效能的影响

    Figure  6.  Effect of incident angle on Shielding Effectiveness (SE) for different polarizations of the original FSS structure

    图  7  优化FSS结构在不同极化方式下入射角度对屏蔽效能的影响

    Figure  7.  Effect of incident angle on SE for different polarizations of the optimized FSS structure

    图  8  实验测试系统以及加工实物的局部示意图

    Figure  8.  Experimental system and part of the proposed FSS prototypes

    图  9  两种FSS在不同入射角度TE和TM极化波照射下实测结果与仿真结果的对比

    Figure  9.  Comparison of measured and simulated results of two fabricated FSSes for TE and TM polarizations under different incident angles

    表  1  双面互补FSS的具体设计参数

    Table  1.   Parameter values of the proposed FSS

    a/mmw1/mmw2/mmt/mm
    6.2 0.2 0.2 1.6
    下载: 导出CSV

    表  2  与其他低频比双频FSS的比较

    Table  2.   Comparison with the alternate dual-band FSSes with low frequency ratio

    referencefL/GHzfH/GHzfH/fLdimension/λ
    Ref.[10] 2.5 3.5 1.4 0.082
    Ref.[11] 4.0 7.0 1.75 0.125
    Ref.[12] 2.5 3.5 1.4 0.080
    Ref.[13] 2.54 3.54 1.39 0.088
    Ref.[14] 2.35 3.05 1.29 0.065
    Ref.[15] 5.55 6.38 1.15 0.268
    Ref.[16] 1.59 1.96 1.23 0.042
    Ref.[17] 1.04 1.49 1.43 0.039
    proposed FSS 3.45 4.01 1.16 0.071
    下载: 导出CSV
  • [1] 唐朝京. 网电对抗下的复杂电磁环境再认识[J]. 强激光与粒子束, 2019, 31:103201. (Tang Chaojing. Recognition of complex electromagnetic environment under cyberspace countermeasures[J]. High Power Laser and Particle Beams, 2019, 31: 103201 doi: 10.11884/HPLPB201931.190248
    [2] 刘尚合, 刘卫东. 电磁兼容与电磁防护相关研究进展[J]. 高电压技术, 2014, 40(6):1605-1613. (Liu Shanghe, Liu Weidong. Progress of relevant research on electromagnetic compatibility and electromagnetic protection[J]. High Voltage Engineering, 2014, 40(6): 1605-1613
    [3] 杨成, 刘培国, 刘继斌, 等. 能量选择表面的瞬态响应[J]. 强激光与粒子束, 2013, 25(4):1045-1049. (Yang Cheng, Liu Peiguo, Liu Jibin, et al. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 1045-1049 doi: 10.3788/HPLPB20132504.1045
    [4] Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2740-2747. doi: 10.1109/TAP.2012.2194640
    [5] 强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222. (Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222 doi: 10.11884/HPLPB201931.190210
    [6] Chatterjee A, Parui S K. Performance enhancement of a dual-band monopole antenna by using a frequency-selective surface-based corner reflector[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2165-2171. doi: 10.1109/TAP.2016.2552543
    [7] Chakradhary V K, Baskey H B, Roshan R, et al. Design of frequency selective surface-based hybrid nanocomposite absorber for stealth applications[J]. IEEE Transactions on Micorwave Theory and Techniques, 2018, 66(11): 4737-4744. doi: 10.1109/TMTT.2018.2864298
    [8] Yan Liping, Xu Liuliu, Zhao Xiang, et al. An angularly stable frequency selective surface with vent holes for 5G electromagnetic shielding[C]//2019 International Symposium on Electromagnetic Compatibility. 2019: 366-369.
    [9] Zhang Jinghan, Yan Liping, Gao R X K, et al. A novel 3D ultra-wide stopband frequency selective surface for 5G electromagnetic shielding[C]//2020 International Symposium on Electromagnetic Compatibility. 2020: 1-4.
    [10] Xu Rongrong, Zhao Huancheng, Zong Zhiyuan, et al. Dual-band capacitive loaded frequency selective surfaces with close band spacing[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(12): 782-784. doi: 10.1109/LMWC.2008.2007697
    [11] Joumayly M, Behdad N. Low-profile, highly-selective, dual-band frequency selective surfaces with closely spaced bands of operation[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(12): 4042-4050. doi: 10.1109/TAP.2010.2078478
    [12] Chiu Chengnan, Wang Wenyi. A dual-frequency miniaturized-element FSS with closely located resonances[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 163-165. doi: 10.1109/LAWP.2013.2245092
    [13] Sivasamy R, Kanagasabai M. A novel dual-band angular independent FSS with closely spaced frequency response[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(5): 298-300. doi: 10.1109/LMWC.2015.2410591
    [14] Ghosh S, Srivastava K V. An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(3): 218-220. doi: 10.1109/LMWC.2017.2661683
    [15] Chen Sihong, Pan Taisong, Lin Yuan. Flexible dual-band ultrathin FSS with ultra-close band spacing[C]//2018 International Symposium on Antennas and Propagation. 2018: 1-2.
    [16] Hong Tao, Wang Mengdan, Peng Ke, et al. Ultrathin and miniaturized frequency selective surface with closely located dual resonance[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(6): 1288-1292. doi: 10.1109/LAWP.2019.2915396
    [17] Cheng Tong, Jia Zhili, Hong Tong, et al. Dual-band frequency selective surface with compact dimension and low frequency ratio[J]. IEEE Access, 2020, 8: 185399-185404. doi: 10.1109/ACCESS.2020.3030131
    [18] Munk B A. Frequency selective surfaces: theory and design[M]. NewYork: John Wiley, 2000.
    [19] 许留留, 闫丽萍, 赵翔. 适用于5G电磁屏蔽的介质开孔型频率选择表面设计[J]. 太赫兹科学与电子信息学报, 2019, 17(4):616-620. (Xu Liuliu, Yan Liping, Zhao Xiang. Design of a frequency selective surface with vent holes through substrate for 5G electromagnetic shielding[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(4): 616-620 doi: 10.11805/TKYDA201904.0616
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  942
  • HTML全文浏览量:  464
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-05-15
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回