留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于JASMIN平台的复合材料方舱SE快速评估

钟金逾 刘强 闫丽萍 赵翔 孟雪松 周海京

钟金逾, 刘强, 闫丽萍, 等. 基于JASMIN平台的复合材料方舱SE快速评估[J]. 强激光与粒子束, 2021, 33: 053003. doi: 10.11884/HPLPB202133.210048
引用本文: 钟金逾, 刘强, 闫丽萍, 等. 基于JASMIN平台的复合材料方舱SE快速评估[J]. 强激光与粒子束, 2021, 33: 053003. doi: 10.11884/HPLPB202133.210048
Zhong Jinyu, Liu Qiang, Yan Liping, et al. JASMIN-based fast shielding effectiveness prediction of enclosure containing thin composite layer[J]. High Power Laser and Particle Beams, 2021, 33: 053003. doi: 10.11884/HPLPB202133.210048
Citation: Zhong Jinyu, Liu Qiang, Yan Liping, et al. JASMIN-based fast shielding effectiveness prediction of enclosure containing thin composite layer[J]. High Power Laser and Particle Beams, 2021, 33: 053003. doi: 10.11884/HPLPB202133.210048

基于JASMIN平台的复合材料方舱SE快速评估

doi: 10.11884/HPLPB202133.210048
基金项目: 国家自然科学基金项目(61877041)
详细信息
    作者简介:

    钟金逾(1996—),男,硕士,主要从事电磁场数值计算与电磁环境效应评估方面的研究

    通讯作者:

    闫丽萍(1972—),女,教授,主要从事电磁兼容建模分析、电磁环境效应评估与电磁场数值计算等方面的研究

  • 中图分类号: O441.4

JASMIN-based fast shielding effectiveness prediction of enclosure containing thin composite layer

  • 摘要: 在时域有限差分(FDTD)法中采用亚网格边界条件(SGBC)法对复合材料薄层结构进行建模,可以突破复合材料薄层对空间步长的限制从而大大降低计算成本。基于大规模并行化平台JASMIN实现了SGBC-FDTD算法,通过对复合材料薄层结构的自动建模和适配,实现对复合材料薄层的快速并行化处理。利用所开发的并行SGBC-FDTD算法计算分析了含不同电磁特性复合材料薄层方舱在0.1~1.0 GHz内的电磁屏蔽效能,结果表明采用并行SGBC-FDTD算法的计算结果与全波分析软件计算结果吻合完好,且计算效率显著提升。
  • 图  1  色散复合材料薄板的SGBC-FDTD算法示意图

    Figure  1.  Diagram of SGBC-FDTD method for dispersive composite thin slab

    图  2  基于JASMIN平台的并行SGBC-FDTD算法流程图

    Figure  2.  Flow chart of parallelized SGBC-FDTD algorithm on JASMIN platform

    图  3  六面为复合材料的方舱计算模型及屏蔽效能

    Figure  3.  Calculation model and shielding effectiveness (SE) prediction of the enclosure with six composite panels

    图  4  含复合材料方舱的计算模型

    Figure  4.  Calculation models of enclousures with composite panels

    图  5  非色散复合材料平板的方舱的SE

    Figure  5.  SE prediction of enclousures containing nondispersive composite panels

    图  6  介电常数拟合值与实际值对比

    Figure  6.  Comparison between fitting values and actual values of permittivity

    图  7  色散复合材料方舱的SE

    Figure  7.  SE prediction of enclosures containing dispersive composite panels

    表  1  MAD和$ \rho $随粗细网格步长比的变化

    Table  1.   Variations of MAD and ρ with respect to the step size ratio of coarse (RFC) and fine meshes

    RCFMAD/dB$ \rho $
    10 0.5410 0.9962
    20 0.5888 0.9964
    40 0.6017 0.9965
    60 0.6040 0.9965
    80 0.6049 0.9965
    100 0.6053 0.9965
    200 0.6058 0.9965
    250 0.6058 0.9965
    下载: 导出CSV

    表  2  MAD和ρ随时间步长的变化

    Table  2.   Variations of MAD and ρ with respect to time step

    aMAD/dB$ \rho $
    0.4 0.5874 0.9963
    0.5 0.5864 0.9965
    0.6 0.5925 0.9965
    0.7 0.6040 0.9965
    0.8 0.6025 0.9965
    0.9 0.6041 0.9965
    下载: 导出CSV

    表  3  拟合得到留数与极点

    Table  3.   Residues and poles obtained by vector fitting

    $ {R_{{\rm{\varepsilon }},k}}$$ {p_{{\rm{\varepsilon }},k}}$
    −9.993+0.0j−3.737+0.0j
    5.129+0.0j−1.898+0.0j
    −2.194+0.0j−0.323+0.0j
    1.699+0.0j−0.253+0.0j
    下载: 导出CSV

    表  4  软件与SGBC-FDTD的计算成本对比

    Table  4.   Comparison of calculation cost between commercial software and SGBC-FDTD

    modeltypemethodtotal cellscomputation time/s
    model in Fig.3 nondispersive software 2.31×107 27950
    SGBC-FDTD 0.64×106 1181
    model in Fig.4(a) nondispersive software 1.43×107 66761
    SGBC-FDTD 0.71×106 1056
    dispersive software 1.23×107 19586
    SGBC-FDTD 0.71×106 1467
    model in Fig.4(b) nondispersive software 2.36×107 28067
    SGBC-FDTD 0.71×106 1537
    dispersive software 1.29×108 141281
    SGBC-FDTD 0.71×106 2540
    model in Fig.4(c) nondispersive software 2.31×107 31315
    SGBC-FDTD 0.64×106 1523
    dispersive software 1.26×108 144824
    SGBC-FDTD 0.64×106 2501
    下载: 导出CSV
  • [1] Wang Jianbao, Zhou Bihua, Shi Lihua, et al. Analyzing the electromagnetic performances of composite materials with the FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2646-2654. doi: 10.1109/TAP.2013.2242824
    [2] 王富强, 马晨, 王东红, 等. 屏蔽复合材料设备舱电磁脉冲屏蔽效能[J]. 强激光与粒子束, 2015, 27:103245. (Wang Fuqiang, Ma Chen, Wang Donghong, et al. Electromagnetic pulse shielding effectiveness of the conductive composites equipment compartment[J]. High Power Laser and Particle Beams, 2015, 27: 103245 doi: 10.11884/HPLPB201527.103245
    [3] 孟雪松, 鲍献丰, 刘德赟, 等. 嵌入式薄片模型在时域有限差分算法中的应用[J]. 强激光与粒子束, 2017, 29:123203. (Meng Xuesong, Bao Xianfeng, Liu Deyun, et al. Embedded thin film model in finite difference time domain method[J]. High Power Laser and Particle Beams, 2017, 29: 123203 doi: 10.11884/HPLPB201729.170196
    [4] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011.

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves[M]. 3rd ed. Xi’an: Xidian University Press, 2011
    [5] Maloney J G, Smith G S. The use of surface impedance concepts in the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(1): 38-48. doi: 10.1109/8.123351
    [6] Feliziani M, Maradei F, Tribellini G. Field analysis of penetrable conductive shields by the finite-difference time-domain method with impedance network boundary conditions (INBCs)[J]. IEEE Transactions on Electromagnetic Compatibility, 1999, 41(4): 307-319. doi: 10.1109/15.809801
    [7] Sarto M S. A new model for the FDTD analysis of the shielding performances of thin composite structures[J]. IEEE Transactions on Electromagnetic Compatibility, 1999, 41(4): 298-306. doi: 10.1109/15.809798
    [8] Meng Xuesong, Vukovic A, Benson T M, et al. Extended capability models for Carbon Fiber Composite (CFC) panels in the Unstructured Transmission Line Modeling (UTLM) method[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 811-819. doi: 10.1109/TEMC.2016.2531791
    [9] Cabello M R, Angulo L D, Alvarez J, et al. A hybrid Crank-Nicolson FDTD subgridding boundary condition for lossy thin-layer modeling[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1397-1406. doi: 10.1109/TMTT.2016.2637348
    [10] Meng Xuesong. Modelling multi-scale problems in the transmission line modelling method[D]. Nottingham, U K: University of Nottingham, 2014.
    [11] Zhu Hui, Gao Cheng, Chen Hailin. An unconditionally stable radial point interpolation method based on Crank-Nicolson scheme[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16(99): 393-395.
    [12] Cabello M R, Angulo L D, Alvarez J, et al. Subgridding boundary conditions to model arbitrarily dispersive thin planar materials[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6424-6434.
    [13] 莫则尧, 张爱清. 并行自适应结构网格应用支撑软件框架(JASMIN 2.0版)用户指南[M]. 2011.

    Mo Zeyao, Zhang Aiqing. User guide of J parallel adaptive structured mesh applications infrastructure (JASMIN 2.0)[Z]. 2011
    [14] 张青洪, 廖成, 李瀚宇, 等. 基于JASMIN框架的抛物方程有限差分解法并行计算及其应用[J]. 强激光与粒子束, 2015, 27:083204. (Zhang Qinghong, Liao Cheng, Li Hanyu, et al. Parallel computing of finite difference algorithm for parabolic equation based on JASMIN and its application[J]. High Power Laser and Particle Beams, 2015, 27: 083204 doi: 10.11884/HPLPB201527.083204
    [15] 李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31:053202. (Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202 doi: 10.11884/HPLPB201931.190026
    [16] Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting[J]. IEEE Transactions on Power Delivery, 1999, 14(3): 1052-1061. doi: 10.1109/61.772353
    [17] 方明江, 刘强, 闫丽萍, 等. 含三维复杂工程细缝金属腔的电磁屏蔽效能评估[J]. 强激光与粒子束, 2018, 30:073201. (Fang Mingjiang, Liu Qiang, Yan Liping, et al. Evaluation of electromagnetic shielding effectiveness for metallic enclosure with three-dimensional complex thin slots[J]. High Power Laser and Particle Beams, 2018, 30: 073201 doi: 10.11884/HPLPB201830.180047
    [18] Elmahgoub K, Elsherbeni A Z, Yang Fan. Dispersive periodic boundary conditions for finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4): 2118-2122. doi: 10.1109/TAP.2012.2186243
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  736
  • HTML全文浏览量:  204
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-04-05
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回