留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

32级模块化Marx发生器机芯模态分析

王海洋 肖晶 谢霖燊 吴伟 程乐 何小平 孙楚昱

王海洋, 肖晶, 谢霖燊, 等. 32级模块化Marx发生器机芯模态分析[J]. 强激光与粒子束, 2021, 33: 085001. doi: 10.11884/HPLPB202133.210054
引用本文: 王海洋, 肖晶, 谢霖燊, 等. 32级模块化Marx发生器机芯模态分析[J]. 强激光与粒子束, 2021, 33: 085001. doi: 10.11884/HPLPB202133.210054
Wang Haiyang, Xiao Jing, Xie Linshen, et al. Modal analysis of the 32-stage modular Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 085001. doi: 10.11884/HPLPB202133.210054
Citation: Wang Haiyang, Xiao Jing, Xie Linshen, et al. Modal analysis of the 32-stage modular Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 085001. doi: 10.11884/HPLPB202133.210054

32级模块化Marx发生器机芯模态分析

doi: 10.11884/HPLPB202133.210054
详细信息
    作者简介:

    王海洋(1979—),男,博士,副研究员,主要从事脉冲功率技术研究

  • 中图分类号: TM832; TH122

Modal analysis of the 32-stage modular Marx generator

  • 摘要: 模态分析可以获得结构的动特性参数。对32级模块化Marx发生器机芯进行了力学特性仿真分析和模态试验,用以评估Marx发生器的力学环境适应性。首先,建立了模块化Marx机芯的有限元模型,获得了初步振型;其次,在自由边界条件下分别开展了Marx机芯整体模态试验、局部模态试验和传递特性试验,得到了整体和局部结构的模态参数。研究表明,模块化Marx机芯在23.58 Hz处出现整体一阶扭转;机芯局部结构固有频率较高;机芯在xyz三个方向的振动传递率的范围分别为5~15,6~10和10~35,为后续工程中Marx发生器机芯的针对性设计提供了参考。
  • 图  1  32级Marx发生器机芯

    Figure  1.  32-stage Marx generator

    图  2  单级模块结构示意图

    Figure  2.  Structure of one stage module

    图  3  32级Marx发生器机芯的模态分析结果

    Figure  3.  Modal analysis results of the 32-stage Marx generator

    图  4  自由边界整体模态试验振型

    Figure  4.  Vibration mode of integral modal analysis under free boundary condition

    图  5  x方向上的振动传递率

    Figure  5.  Vibrational transmissibility on x axis

    图  6  y方向上的振动传递率

    Figure  6.  Vibrational transmissibility on y axis

    图  7  z方向上的振动传递率

    Figure  7.  Vibrational transmissibility on z axis

    表  1  材料参数

    Table  1.   Parameters of the materials

    materialYoung modulus/GPaPoisson’s ratiodensity/(kg·m−3
    stainless steel1900.338000
    glass fiber37.20.252440
    MC nylon31.90.401150
    下载: 导出CSV

    表  2  自由边界整体模态试验结果

    Table  2.   Integral modal analysis results under free boundary condition

    frequency/Hzdamping ratio/%mode of vibration
    23.581.50overall first-order torsion
    30.761.31overall first-order bend in y direction
    34.330.99overall first-order bend in z direction
    48.760.98approximate second-order bend in z direction
    63.310.92overall second-order torsion
    70.931.40the phase of glass fiber side plate
    in x direction is opposite
    75.141.91overall second-order bend in z direction
    下载: 导出CSV

    表  3  自由边界局部模态试验结果

    Table  3.   Local modal test results under free boundary condition

    frequency/Hzcorresponding part
    100.6,151.3upper shielded ring at the outermost of the 4th module
    129.4,188.7upper shielded ring at the outermost of the 3rd module
    59.28,206.3capacitor and switch of the 4th module
    58.59,219.8capacitor and switch of the 3rd module
    124.9,225.8U-shape support rod of the 1st module
    下载: 导出CSV
  • [1] 邓明海, 曹宁翔, 马成刚, 等. 200 kV重复频率Marx发生器研制[J]. 强激光与粒子束, 2019, 31:055003. (Deng Minghai, Cao Ningxiang, Ma Chenggang, et al. Development of 200 kV repetitive Marx generator[J]. High Power Laser and Particle Beams, 2019, 31: 055003 doi: 10.11884/HPLPB201931.190369
    [2] Redjimi A, Nikolić Z, Knež ević D, et al. Post-processing synchronization and characterization of generated signals by a repetitive Marx generator[J]. Optical and Quantum Electronics, 2018, 50: 352. doi: 10.1007/s11082-018-1614-x
    [3] Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
    [4] 宋法伦, 李飞, 龚海涛, 等. 高功率重复频率Marx型脉冲功率源小型化技术研究进展[J]. 强激光与粒子束, 2018, 30:020201. (Song Falun, Li Fei, Gong Haitao, et al. Research progress on miniaturization of high power repetition frequency Marx type pulse power source[J]. High Power Laser and Particle Beams, 2018, 30: 020201 doi: 10.11884/HPLPB201830.170337
    [5] 贾伟, 陈志强, 郭帆, 等. 典型布局Marx发生器内部过压形成与分布[J]. 华中科技大学学报(自然科学版), 2018, 46(10):110-115. (Jia Wei, Chen Zhiqiang, Guo Fan, et al. Formation mechanism and distribution of internal overvoltage of Marx generator with typical layouts[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2018, 46(10): 110-115
    [6] 张永民, 陈维青, 杨莉, 等. 储能型Marx发生器的串联电感计算[J]. 高电压技术, 2009, 35(3):651-656. (Zhang Yongmin, Chen Weiqing, Yang Li, et al. Inductance calculation of storage Marx generator[J]. High Voltage Engineering, 2009, 35(3): 651-656
    [7] Nasab J N, Hadizade A, Mohsenzade S, et al. A Marx-based generator with adjustable FWHM using a controllable magnetic switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 324-331. doi: 10.1109/TDEI.2018.007522
    [8] 王翔宇, 樊亚军, 乔汉青, 等. 全同轴型Marx发生器的研制与场路协同仿真[J]. 强激光与粒子束, 2019, 31:115001. (Wang Xiangyu, Fan Yajun, Qiao Hanqing, et al. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31: 115001 doi: 10.11884/HPLPB201931.190125
    [9] 刘锐, 曾乃工, 王新新. 1.2 MV全封闭Marx发生器的绝缘结构设计[J]. 高电压技术, 2005, 31(4):69-70. (Liu Rui, Zeng Naigong, Wang Xinxin. Insulation design for a 1.2 MV enclosed Marx generator[J]. High Voltage Engineering, 2005, 31(4): 69-70 doi: 10.3969/j.issn.1003-6520.2005.04.026
    [10] 高炳军, 王滨, 翟兰惠, 等. 吊带支撑低温储罐运输中随机振动分析[J]. 河北工业大学学报, 2018, 47(1):48-52, 58. (Gao Bingjun, Wang Bin, Zhai Lanhui, et al. Random vibration analysis of the strip-supported-cryogenic storage tank in transporting[J]. Journal of Hebei University of Technology, 2018, 47(1): 48-52, 58
    [11] 瞿金秀, 石长全, 王磊超, 等. 不同老化状态黏弹夹层结构的模态分析[J]. 振动与冲击, 2020, 39(11):69-75. (Qu Jinxiu, Shi Changquan, Wang Leichao, et al. Modal analysis of viscoelastic sandwich structure with different aging states[J]. Journal of Vibration and Shock, 2020, 39(11): 69-75
    [12] 张建斌. 带橡胶减振器的箭载电子设备动力学响应分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Zhang Jianbin.Research on dynamic response of the electronic equipment with rubber shock absorber on the rockets[D].Harbin: Harbin Institute of Technology, 2019
    [13] 陈双, 包黎明, 於胜军. 不同路面工况下的整车振动模态能量分析[J]. 机械设计与制造, 2019(3):82-85, 90. (Chen Shuang, Bao Liming, Yu Shengjun. Modal energy analysis of vehicle vibration under different road[J]. Machinery Design & Manufacture, 2019(3): 82-85, 90
    [14] 唐利涛, 杨舟, 李刚, 等. 基于疲劳损伤谱的随机振动试验方法在智能电表模拟公路运输中的研究[J]. 装备环境工程, 2019, 16(5):38-42. (Tang Litao, Yang Zhou, Li Gang, et al. Random vibration test method based on fatigue damage spectrum in simulation of road transport with smart meter[J]. Equipment Environmental Engineering, 2019, 16(5): 38-42
    [15] 李勤建, 高翠琢, 边国辉. 组件的模态分析和随机振动分析[J]. 半导体技术, 2012, 37(10):810-814. (Li Qinjian, Gao Cuizhuo, Bian Guohui. Modal analysis and random vibration analysis on a module[J]. Semiconductor Technology, 2012, 37(10): 810-814 doi: 10.3969/j.issn.1003-353x.2012.10.015
    [16] 王桂伦, 姜东, 周李真辉, 等. 铰接式空间桁架结构模态试验研究[J]. 振动与冲击, 2019, 38(12):252-257. (Wang Guilun, Jiang Dong, Zhou Lizhenhui, et al. Modal experiment for a spherical hinged space truss structure[J]. Journal of Vibration and Shock, 2019, 38(12): 252-257
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  245
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 修回日期:  2021-08-02
  • 网络出版日期:  2021-08-14
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回