Study on GIC algorithm of railway traction power supply system under action of late time HEMP
-
摘要: 高空核爆电磁脉冲晚期效应(E3)会引起地磁场剧烈变化并形成地面感应电场。感应电场等效为激励源与地面长距离导体和大地构成回路,产生地磁感应电流 (GIC)。GIC可引起牵引供电系统中变压器直流偏磁,从而严重威胁牵引供电系统的安全运行。本文基于平面波理论、分层大地电导率模型并结合牵引供电系统的电路模型,提出E3作用下的牵引供电系统GIC算法,并以带回流线的直接供电方式的铁路牵引供电系统为例,首次计算了系统GIC情况。结果表明,该供电方式下牵引供电系统中的GIC远大于系统中变压器等设备的耐受值,为进一步研究E3作用下牵引供电系统效应及我国铁路设备选型、灾害防治等提供支撑。Abstract: The late effect of high-altitude electromagnetic pulse (E3) will cause dramatic changes in the Earth's magnetic field and form a ground induced electric field. The induced electric field is equivalent to forming a loop between the excitation source and the ground long-distance conductor and the Earth, generating a geomagnetic induction current (GIC). GIC can cause DC bias of the transformer in the traction power supply system, thereby seriously threatening the safe operation of the traction power supply system. Based on the plane wave theory, the layered Earth conductivity model and the circuit model of the traction power supply system, this paper proposes the GIC algorithm of the traction power supply system under the action of E3, and takes the railway traction power supply system with return line direct power supply as an example. Calculating the system GIC situation shows that the GIC in the traction power supply system under this power supply mode is far greater than the withstand value of the transformer and other equipment in the system. The study provides support for further research on the effect of the traction power supply system under the action of E3, the selection of our domestic railway equipment, and disaster prevention.
-
表 1 带回流线的直接供电方式牵引供电系统算例参数
Table 1. Example parameters of traction power supply system with return line
equipment name equipment type DC resistance overhead catenary CTM-120 0.186 Ω/km carrier cable JTM-95 0.244 Ω/km return line LBGLJ-240 0.121 Ω/km rail P-50 0.032 Ω/km traction transformer D11-QY-40000/220 Rqy=0.0197 Ω on board transformer TBQ4-4760/25 Rdc=0.5165 Ω traction transformer grounding resistance — Rjd1=0.21 Ω rail grounding resistance — Rjd=0.163 Ω 表 2 带回流线的直接供电方式牵引供电系统GIC计算结果
Table 2. GIC calculation results of traction power supply system with return Line
variable parameter parameter value GIC (Ijc) minimum and maximum value/A θ 0° [−8.73,90.7] 45° [−6.17,64.13] 90° 0 D 5 km [−3.72,38.64] 15 km [−7.88,81.89] 25 km [−8.73,90.7] -
[1] IEC 61000-2-9, Electromagnetic compatibility (EMC)—Part 2: environment—section 9: description of HEMP environment—radiated disturbance[S]. [2] Gilbert J, Radasky W A, Smith K S, et al. HEMP TAPS/HEMP-PC audit report[R]. Meta R-131, 1999; DTRA-TR-00-1, 2002. [3] 邢军强, 王菲, 韩刚, 等. 大地直流偏磁影响下电力变压器损耗及温升计算研究[J]. 电气技术, 2020, 21(1):20-24, 30. (Xing Junqiang, Wang Fei, Han Gang, et al. Research on loss and temperature rise calculation method of power transformer under the influence of geomagnetically induced current[J]. Electrical Engineering, 2020, 21(1): 20-24, 30 doi: 10.3969/j.issn.1673-3800.2020.01.007 [4] 师泯夏, 吴邦, 靳宇晖, 等. 直流偏磁对变压器影响研究综述[J]. 高压电器, 2018, 54(7):20-36, 43. (Shi Minxia, Wu Bang, Jin Yuhui, et al. Research summary on the impacts of DC magnetic bias on transformer[J]. High Voltage Apparatus, 2018, 54(7): 20-36, 43 [5] Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the U. S. power grid[R]. Goleta: Oak Ridge National Laboratory, 2010. [6] Hutchins T. Modeling, simulation, and mitigation of the impacts of the late time (E3) high-altitude electromagnetic pulse on power systems[D]. Urbana: University of Illinois at Urbana-Champaign, 2016. [7] Lee R H W, Shetye K S, Birchfield A B, et al. Using detailed ground modeling to evaluate electric grid impacts of late-time high-altitude electromagnetic pulses (E3 HEMP)[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1549-1557. doi: 10.1109/TPWRS.2018.2878533 [8] 余同彬, 周璧华. HEMP作用下近地有限长电缆外皮感应电流研究[J]. 解放军理工大学学报(自然科学版), 2002, 3(1):8-12. (Yu Tongbin, Zhou Bihua. Study of HEMP induced current in cables with finite length near the ground[J]. Journal of PLA University of Science and Technology, 2002, 3(1): 8-12 [9] 赵志斌, 柯俊吉, 马丽斌. 高空核电磁脉冲晚期效应对电网稳定性影响的研究[J]. 电气技术, 2015, 16(9):16-19. (Zhao Zhibin, Ke Junji, Ma Libin. Research on impact of late-time HEMP to stability of power grids[J]. Electrical Engineering, 2015, 16(9): 16-19 doi: 10.3969/j.issn.1673-3800.2015.09.004 [10] 陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007. (Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184 [11] Ngwira C M, Pulkkinen A, McKinnell L A, et al. Improved modeling of geomagnetically induced currents in the South African power network[J]. Space Weather, 2008, 6: S11004. [12] 章鑫, 杜学彬, 刘君. 华北地区地电暴时GIC及涡旋电流响应分析[J]. 地球物理学报, 2017, 60(5):1800-1810. (Zhang Xin, Du Xuebin, Liu Jun. Analysis of GIC and vortex current responses in Huabei region during geoelectric storms[J]. Chinese Journal of Geophysics, 2017, 60(5): 1800-1810 doi: 10.6038/cjg20170516 [13] 李功新, 王倩, 刘连光. 输电线路地磁感应电流常用算法分析与研究[J]. 现代电力, 2005, 22(5):42-46. (Li Gongxin, Wang Qian, Liu Lianguang. Analysis and study of common algorithms for geomagnetic inductive current in grid[J]. Modern Electric Power, 2005, 22(5): 42-46 doi: 10.3969/j.issn.1007-2322.2005.05.009 [14] Wait J R. Wave propagation theory[M]. New York: Pergamon, 1981. [15] Chew W C. Waves and fields in inhomogeneous media[M]. New York: IEEE Press, 1995. [16] Overbye T J, Shetye K S, Hutchins T R, et al. Power grid sensitivity analysis of geomagnetically induced currents[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4821-4828. doi: 10.1109/TPWRS.2013.2274624 [17] TB 10009-2016, 铁路电力牵引供电设计规范[S].TB 10009-2016, Code for design of railway traction power supply[S]. [18] 周游. 不同强度地磁暴对高铁牵引网影响的研究[D]. 北京: 华北电力大学, 2016.Zhou You. Research on the effects of different intensities geomagnetic storms affecting high-speed railway traction network[D]. Beijing: North China Electric Power University, 2016. [19] 马骋原. 强磁暴侵害高铁电气一次系统的建模方法研究[D]. 北京: 华北电力大学, 2015.Ma Chengyuan. Research on modeling method of strong geomagnetic storm impacting on high-speed rail electrical primary system[D]. Beijing: North China Electric Power University, 2015. [20] 曹源. 用于电网GIC计算的大地电阻率模型研究[D]. 北京: 华北电力大学, 2010.Cao Yuan. Earth resistivity modeling method for the evaluation of Geomagnetically Induced Current in power grid[D]. Beijing: North China Electric Power University, 2010. [21] DL/T 437-2012, 高压直流接地极技术导则[S].DL/T 437-2012, Technical guide of HVDC earth electrode system[S].