留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多导体传输线串扰实验不确定度的预测

邓莉亭 钟龙权 刘强 孙子涵 闫丽萍 赵翔

邓莉亭, 钟龙权, 刘强, 等. 多导体传输线串扰实验不确定度的预测[J]. 强激光与粒子束, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066
引用本文: 邓莉亭, 钟龙权, 刘强, 等. 多导体传输线串扰实验不确定度的预测[J]. 强激光与粒子束, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066
Deng Liting, Zhong Longquan, Liu Qiang, et al. Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines[J]. High Power Laser and Particle Beams, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066
Citation: Deng Liting, Zhong Longquan, Liu Qiang, et al. Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines[J]. High Power Laser and Particle Beams, 2021, 33: 083002. doi: 10.11884/HPLPB202133.210066

多导体传输线串扰实验不确定度的预测

doi: 10.11884/HPLPB202133.210066
基金项目: 国家自然科学基金项目(61877041);成都市科技项目(2020-GH02–00061-Hz)
详细信息
    作者简介:

    邓莉亭(1996—),女,硕士,主要从事电磁兼容方面的研究

    通讯作者:

    闫丽萍(1972—),女,教授,主要从事电磁兼容建模分析和电磁环境效应评估方面的研究

  • 中图分类号: O441.4

Uncertainty prediction of crosstalk measurement for multi-conductor transmission lines

  • 摘要: 利用随机降阶模型(SROM)对影响线缆串扰的不确定变量进行了敏感性分析,在此基础上预测了在这些不确定性变量影响下的串扰不确定度。并搭建三导体传输线串扰实验系统,测量了近端串扰和远端串扰,根据标准GB/Z 6113.401—2018/CISPR/TR 16-4-1:2009,评估了串扰实验的测量不确定度。将基于SROM方法的串扰不确定度,与实际测量获得的不确定度进行对比。结果表明,二者随频率变化趋势一致,且实验测试不确定度在预测不确定度范围内。采用SROM方法选取样本计算的不确定度可用于预测串扰实际测量结果不确定度。
  • 图  1  三导体传输线模型图

    Figure  1.  The model of three-conductor transmission line

    图  2  三导体串扰敏感性分析结果

    Figure  2.  Three-conductor crosstalk sensitivity analysis results

    图  3  不同导线间距和高度对近端串扰敏感性的影响

    Figure  3.  Effects of spacing and height on the sensitivity of NEXT

    图  4  样本选取

    Figure  4.  Sample selection

    图  5  基于SROM方法的串扰结果图

    Figure  5.  Upper and lower bound obtained using the SROM method

    图  6  线缆串扰实验测试系统图

    Figure  6.  Experimental system of cable crosstalk

    图  7  单导线一致性测试结果

    Figure  7.  Consistency measurement result of single wire

    图  8  测试结果与仿真结果对比

    Figure  8.  Comparison between measured and simulated results

    图  9  三导体传输线测试结果图

    Figure  9.  Diagram of three-conductor transmission line test results

    图  10  三导体传输线测试不确定度

    Figure  10.  Test uncertainty of three-conductor transmission lines

    表  1  输入变量的统计特性

    Table  1.   Statistical properties of the input variables

    mean(h)σ(h)COV(h)mean(d)σ(d)COV(d)mean(r)σ(r)COV(r)mean(R)σ(R)COV(R)
    1010.12020.10.40.040.15050.1
    下载: 导出CSV

    表  2  输入变量的统计特性

    Table  2.   Statistical properties of the input variables

    h/mmd/mm
    Mean 5 10 15 15 20 25
    $\sigma $ 0.5 1 1.5 1.5 2 2.5
    COV 0.1 0.1 0.1 0.1 0.1 0.1
    下载: 导出CSV

    表  3  50 Ω SMA负载阻值

    Table  3.   50 Ω SMA load resistance

    R1R2R3R4R5R6R7R8
    49.048.048.048.049.048.048.048.5
    下载: 导出CSV

    表  4  金属地上双导线串扰测试结果与仿真结果对比

    Table  4.   Comparison of crosstalk between measured and simulated results

    ρΔ/dB
    NEXT0.93541.108
    FEXT0.92190.7679
    下载: 导出CSV
  • [1] Yuan K, Grassi F, Spadacini G, et al. Reproducing field-to-wire coupling effects in twisted-wire pairs by crosstalk[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(4): 991-1000. doi: 10.1109/TEMC.2017.2752231
    [2] 郑军奇. EMC电磁兼容设计与测试案例分析[M]. 北京: 电子工业出版社, 2010.

    Zheng Junqi. Electromagnetic compatibility design and test case analysis[M]. Beijing: Publishing House of Electronics Industry, 2010
    [3] Dong X, Weng H, Beetner D G, et al. Approximation of worst case crosstalk at high frequencies[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(1): 202-208. doi: 10.1109/TEMC.2010.2081676
    [4] 单秦. 高速动车组电磁兼容性关键技术研究[D]. 北京: 北京交通大学, 2013: 93-148.

    Shan Qin. Research on key technologies of electromagnetic compatibility for China railway high-speed[D]. Beijing: Beijing Jiaotong University, 2013: 93-148
    [5] Grassi F, Abdollahi H, Spadacini G, et al. Radiated immunity test involving crosstalk and enforcing equivalence with field-to-wire coupling[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 66-74. doi: 10.1109/TEMC.2015.2503599
    [6] Chabane S, Besnier P, Klingler M. A modified enhanced transmission line theory applied to multiconductor transmission lines[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 1-11. doi: 10.1109/TEMC.2016.2622018
    [7] Rotgerink J L, Schippers H, Leferink F. Low-frequency analysis of multiconductor transmission lines for crosstalk design rules[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 61(5): 1-9.
    [8] 杨清熙, 王庆国, 周星, 等. 有耗地面上架空线缆串扰研究等效电路模型[J]. 强激光与粒子束, 2015, 27:083203. (Yang Qingxi, Wang Qingguo, Zhou Xing, et al. Equivalent circuit for crosstalk of overhead cables on lossy ground[J]. High Power Laser and Particle Beams, 2015, 27: 083203 doi: 10.11884/HPLPB201527.083203
    [9] 赵翔, 晏奇林, 闫丽萍. 多导体传输线高频场线耦合模型的研究综述[J]. 强激光与粒子束, 2015, 27:120201. (Zhao Xiang, Yan Qilin, Yan Liping. Review of high-frequency field-to-line coupling model of multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2015, 27: 120201 doi: 10.11884/HPLPB201527.120201
    [10] 叶志红, 廖成, 张敏, 等. 基于时域BLT的多导体传输线串扰响应分析[J]. 强激光与粒子束, 2014, 26:073212. (Ye Zhihong, Liao Cheng, Zhang Min, et al. Analysis of crosstalk responses of multi-conductor transmission lines based on time domain BLT equation[J]. High Power Laser and Particle Beams, 2014, 26: 073212 doi: 10.11884/HPLPB201426.073212
    [11] 石立华, 张琦, 周颖慧, 等. 线束干扰响应的精简计算模型[J]. 强激光与粒子束, 2013, 25:531-536. (Shi Lihua, Zhang Qi, Zhou Yinghui, et al. Reduced model for disturbance analysis of cable bundles[J]. High Power Laser and Particle Beams, 2013, 25: 531-536 doi: 10.3788/HPLPB20132502.0531
    [12] 张丹. 高速动车组电磁兼容预测建模方法及其应用研究[D]. 北京: 北京交通大学, 2017: 35-54.

    Zhang Dan. Research on the predicting modeling method of electromagnetic compatibility and its application for EMUs[D]. Beijing: Beijing Jiaotong University, 2017: 35-54
    [13] 张枭啸. 机载线束串扰及场线耦合计算研究[D]. 南京: 东南大学, 2017: 23-48.

    Zhang Xiaoxiao. Research on calculation of crosstalk and field-to-wire[D]. Nanjing: Southeast University, 2017: 23-48
    [14] Paul C R. Solution of the transmission-line equations for three-conductor lines in homogeneous media[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, 20(1): 216-222.
    [15] 肖培. 机电设备互连线缆电磁干扰建模及计算方法研究[D]. 成都: 电子科技大学, 2019: 40-41.

    Xiao Pei. Study on modeling and calculation method for the electromagnetic interference of interconnection cable in electromechanical equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 40-41
    [16] Xiu D. Efficient collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293-309.
    [17] Field R V J, Grigoriu M, Emery J M. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems[J]. Probabilistic Engineering Mechanics, 2015, 41: 60-72. doi: 10.1016/j.probengmech.2015.05.002
    [18] 刘青, 王晨东, 李湛宇, 等. 埋地管道HEMP响应的不确定度量化[J]. 电工技术学报, 2019, 34(9):1789-1797. (Liu Qing, Wang Chendong, Li Zhanyu, et al. Uncertainty quantification of response of buried pipeline to high-altitude electromagnetic pulse[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1789-1797
    [19] Fei Z, Huang Y, Zhou J, et al. Sensitivity analysis of cable crosstalk to uncertain parameters using stochastic reduced order models[C]//IEEE International Symposium on Electromagnetic Compatibility. 2016: 385-389.
    [20] Fei Z, Huang Y, Zhou J, et al. Uncertainty quantification of crosstalk using stochastic reduced order models[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 59(1): 228-239.
    [21] 李俊辛, 刘强, 闫丽萍, 等. 基于JASMIN的并行CP-FDTD建模与屏蔽效能评估应用[J]. 强激光与粒子束, 2019, 31:053202. (Li Junxin, Liu Qiang, Yan Liping, et al. JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J]. High Power Laser and Particle Beams, 2019, 31: 053202 doi: 10.11884/HPLPB201931.190026
    [22] GB/Z 6113.401-2018, 无线电骚扰和抗扰度测量设备和测量方法规范(第4-1部分): 不确定度、统计学和限值建模 标准化EMC试验的不确定度[S].

    GB/Z 6113.401-2018, Specification for radio disturbance and immunity measurement equipment and measurement methods —Part 4-1: Uncertainty, statistics and limit modeling — Uncertainty in standardized EMC tests[S]
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  888
  • HTML全文浏览量:  259
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-07-01
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回