留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HIAF电子冷却装置高精度线圈磁轴测量

沙小平 冒立军 陆海娇 杨晓东 杨颜冰 汤梅堂 赵丽霞 马伏 马晓明 李杰 何仑 孙晓龙

沙小平, 冒立军, 陆海娇, 等. HIAF电子冷却装置高精度线圈磁轴测量[J]. 强激光与粒子束, 2021, 33: 084001. doi: 10.11884/HPLPB202133.210073
引用本文: 沙小平, 冒立军, 陆海娇, 等. HIAF电子冷却装置高精度线圈磁轴测量[J]. 强激光与粒子束, 2021, 33: 084001. doi: 10.11884/HPLPB202133.210073
Sha Xiaoping, Mao Lijun, Lu Haijiao, et al. Magnetic axis measurement of the high precision coil for the High Intensity heavy-ion Accelerator Facility electron cooler[J]. High Power Laser and Particle Beams, 2021, 33: 084001. doi: 10.11884/HPLPB202133.210073
Citation: Sha Xiaoping, Mao Lijun, Lu Haijiao, et al. Magnetic axis measurement of the high precision coil for the High Intensity heavy-ion Accelerator Facility electron cooler[J]. High Power Laser and Particle Beams, 2021, 33: 084001. doi: 10.11884/HPLPB202133.210073

HIAF电子冷却装置高精度线圈磁轴测量

doi: 10.11884/HPLPB202133.210073
基金项目: 国家自然科学基金项目(11575264);国家重点研发计划项目(2019YFA0405400)
详细信息
    作者简介:

    沙小平(1988—),男,硕士研究生,工程师,从事电子冷却磁场测量方面研究

    通讯作者:

    冒立军(1980—),男,博士,研究员,从事电子冷却技术研究

  • 中图分类号: TL503.91

Magnetic axis measurement of the high precision coil for the High Intensity heavy-ion Accelerator Facility electron cooler

  • 摘要: 强流重离子加速器装置(HIAF)将采用电子冷却技术,降低重离子束流的发射度和动量分散,提高核物理及原子物理实验的精度与亮度。电子冷却装置的冷却段磁场均匀度是影响冷却效率的主要参数,HIAF电子冷却装置采用多个独立高精度线圈串联产生纵向磁场的设计,获得极高的冷却段磁场均匀度。本文介绍了一种测量高精度线圈磁轴偏角的装置,采用定位装置测量线圈的几何对称轴,通过旋转霍尔探头测量线圈中心平面上的径向与轴向磁场分布,再根据磁场测量数据计算出线圈磁轴与几何对称轴之间的偏角。实际测量表明该装置的磁轴偏角测量精度达到±0.10 mrad。测量得到的HIAF电子冷却装置冷却段线圈样品的磁轴偏角为(1.28±0.10)mrad,达到设计要求。
  • 图  1  SRing电子冷却装置三维结构

    Figure  1.  3D structure of the SRing electron cooler

    图  2  SRing电子冷却装置冷却段设计

    Figure  2.  Cooling section design of the SRing electron cooler

    图  3  高精度线圈关键尺寸及调节方式

    Figure  3.  Key mechanical parameters of one solenoid coil and its adjusting system

    图  4  磁场测量装置结构

    Figure  4.  Structure of magnetic field measurement platform

    图  5  霍尔探头的磁场测量结果及稳定性分析

    Figure  5.  Magnetic field measurement results and stabilities

    图  6  磁场矢量分析

    Figure  6.  Vector analysis of magnetic field

    图  7  霍尔片安装误差引起的磁轴偏角测量相对误差

    Figure  7.  Angle relative error between the coil magnetic field axis and the geometric symmetrical axis due to Hall plates installation error

    图  8  位于测磁平台上的线圈照片

    Figure  8.  Photo of coil on the magnetic field measurement

    图  9  本底磁场测量结果

    Figure  9.  Background magnetic field measurement result

    图  10  线圈在125 A电流下的磁场测量结果(正面)

    Figure  10.  Magnetic field measurement of one coil with the current of 125 A (front side)

    图  11  线圈在125 A电流下的磁场测量结果(反面)

    Figure  11.  Magnetic field measurement of one coil with the current of 125 A (opposite side)

    图  12  不同电流下磁轴偏角大小和偏向测量结果

    Figure  12.  Measurement results of magnetic field axis angle and direction with different operation current

  • [1] Yang Jiancheng, Xia Jiawen, Xiao Guoqing, et al. High intensity Heavy Ion Accelerator Facility (HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 317: 263-265. doi: 10.1016/j.nimb.2013.08.046
    [2] Mao Lijun Li Jie, LuHaijiao, et al. The electron cooling system for HIAF project in China[C]//Proc of COOL’2019. 2019: 15-17.
    [3] SchmoKller T, Zwicknagel G, Toepffer C. Numerical simulaion of the adiabatic acceleration of electron beams[J]. Nuclear Instruments and Methods in Physics Research, 2000, A441: 50-53.
    [4] 杨晓东, 何源, 赵红卫, 等. HIRFL-CSR电子冷却装置高精度螺线管线圈制作及磁场测量[J]. 强激光与粒子束, 2001, 13(5):649-652. (Yang Xiaodong, He Yuan, Zhao Hongwei, et al. Manufacture and magnetic field measurement of high precision solenoid coils for HIRFL-CSR electron cooling device[J]. High Power Laser and Particle Beams, 2001, 13(5): 649-652
    [5] Bocharov V N, Bublei A V, Konstantinov S G, et al. Precision measurements and compensation for the transverse components of the solenoids’ magnetic field[J]. Instruments and Experimental Techniques, 2005, 48: 772-779. doi: 10.1007/s10786-005-0139-2
    [6] 杨晓东, Parkhomchuk V V. HIRFL—CSR实验环电子冷却装置参数优化[J]. 强激光与粒子束, 2000, 12(6):771-775. (Yang Xiaodong, Parkhomchuk V V. Parameters optimization of HIRFL-CSR experiment ring electron cooling device[J]. High Power Laser and Particle Beams, 2000, 12(6): 771-775
    [7] Parkhomchuk V V, Skrinsky A N. Electron cooling: 35 years of development[J]. Physics-Uspekhi, 2000, 43(5): 433-452. doi: 10.1070/PU2000v043n05ABEH000741
    [8] Tranquille D, Joergensen L V, Luckin D, et al. The CERN-ELENA electron cooler magnetic system[C]//9th International Particle Accelerator Conference. 2018: 842-845.
    [9] 冒立军, 杨晓东, 李杰, 等. HIRFL-CSR实验环电子冷却装置磁场测量[J]. 强激光与粒子束, 2005, 17(7):1106-1110. (Mao Lijun, Yang Xiaodong, Li Jie, et al. Magnetic field measurement of HIRFL-CSR experimental ring electron cooling device[J]. High Power Laser and Particle Beams, 2005, 17(7): 1106-1110
    [10] Bocharov V, Bubley A, Konstantinov S, et al. Precise measurements of a magnetic field at the solenoids for low energy coolers[C]//AIP Conference Proceedings. 2006.
    [11] Antokhin E I, Bocharov V N, Bubley A V, et al. Conceptial project of an electron cooling system at an energy electrons of 350 keV[J]. Nucl Instr & Meth in Phys Res, 2000, A441: 87-91.
  • 加载中
图(12)
计量
  • 文章访问数:  748
  • HTML全文浏览量:  298
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-06-18
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回