留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于角色散的非共线匹配宽带三倍频技术

毛硕羽 冯斌 李平 柴向旭 王礼权 王冠中 敬域堃

毛硕羽, 冯斌, 李平, 等. 基于角色散的非共线匹配宽带三倍频技术[J]. 强激光与粒子束, 2021, 33: 071003. doi: 10.11884/HPLPB202133.210074
引用本文: 毛硕羽, 冯斌, 李平, 等. 基于角色散的非共线匹配宽带三倍频技术[J]. 强激光与粒子束, 2021, 33: 071003. doi: 10.11884/HPLPB202133.210074
Mao Shuoyu, Feng Bin, Li Ping, et al. Noncollinear matched broadband third-harmonic generation based on angular dispersion[J]. High Power Laser and Particle Beams, 2021, 33: 071003. doi: 10.11884/HPLPB202133.210074
Citation: Mao Shuoyu, Feng Bin, Li Ping, et al. Noncollinear matched broadband third-harmonic generation based on angular dispersion[J]. High Power Laser and Particle Beams, 2021, 33: 071003. doi: 10.11884/HPLPB202133.210074

基于角色散的非共线匹配宽带三倍频技术

doi: 10.11884/HPLPB202133.210074
基金项目: 国家自然科学基金青年基金项目(51902299)
详细信息
    作者简介:

    毛硕羽(1996—),男,硕士研究生,从事非线性光学方面的研究

    通讯作者:

    冯 斌(1976—),男,研究员,硕士生导师,主要从事强激光技术的研究

  • 中图分类号: O437

Noncollinear matched broadband third-harmonic generation based on angular dispersion

  • 摘要: 宽带光打靶可以有效降低激光等离子体相互作用过程中非线性效应。提出一种基于角色散的非共线匹配宽带三倍频方案,利用宽带基频与窄带二倍频的非共线和频产生宽带三倍频,和频过程中通过特殊设计的渐变光栅实现不同频率的基频光束以特定角度入射,补偿了波长差异引入的位相失配使得全波段满足位相匹配条件。理论模拟表明,采用KDP晶体Ⅱ类位相匹配,将中心波长为1058 nm、带宽10 nm的宽带基频光与526.5 nm的二倍频光进行非共线匹配和频,可以实现高效宽带三倍频转换。
  • 图  1  基于角色散非共线匹配的宽带三倍频光路方案示意图

    Figure  1.  Schematic of broadband third-harmonic generation with angularly dispersed noncollinear matching

    图  2  非共线匹配示意图和基于角色散非共线匹配示意图

    Figure  2.  Schematic of noncollinear phase matching and angularly dispersed noncollinear matching

    图  3  不同波长下,晶体内角度与Δk的关系

    Figure  3.  Angle in crystal with Δk of different wavelengths

    图  4  偏离角度与波长的变化关系

    Figure  4.  Relationship between deviation angle and wavelength

    图  5  渐变光栅G3刻线密度的随其长度(x)的变化关系

    Figure  5.  Distribution of gradient grating G3 line density with location (x)

    图  6  无光栅、使用常规光栅及渐变光栅G3补偿的情况下,不同频率成分对应的谐波转换效率及转换效率随晶体长度的分布曲线

    Figure  6.  Efficiency of different frequency without grating, with ordinary

    图  7  转换效率随基频光强度的分布曲线

    Figure  7.  Efficiency changes with crystal length of different schemes grating and grating G3

    图  8  光束口径对谐波转换效率图像

    Figure  8.  Influence of beam aperture on harmonic conversion efficiency

    图  9  不同光束口径下,带宽对谐波转换效率图像

    Figure  9.  Influence of band on harmonic conversion efficiency at different beam aperture

  • [1] Linford G J, Johnson B C, Hildum J S, et al. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory[J]. Applied Optics, 1982, 21(20): 3633-3643. doi: 10.1364/AO.21.003633
    [2] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
    [3] Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7505): 343-348.
    [4] Lindl J D, Landen O L, Edwards J, et al. Erratum: “review of the National Ignition Campaign 2009-2012” [Phys. Plasmas 21, 020501 (2014)][J]. Physics of Plasmas, 2014, 21: 129902. doi: 10.1063/1.4903459
    [5] 李强, 张彬, 蔡邦维, 等. 时间位相调制对高强度三次谐波转换的影响[J]. 光子学报, 2004, 33(7):782-785. (LI Qiang, Zhang Bin, Cai Bangwei, et al. The effect of temporal phase modulation on high-power third harmonics conversion[J]. Acta Photonica Sinica, 2004, 33(7): 782-785
    [6] Pennington D M, Henesian M A, Milam D, et al. Efficient broadband third-harmonic frequency conversion via angular dispersion[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion. 1995: 645-654.
    [7] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3: e3. doi: 10.1017/hpl.2014.52
    [8] Choge D K, Chen Huaixi, Guo Lei, et al. High power broadband orange laser by double-pass sum-frequency mixing in MgO: PPLN[J]. Laser Physics Letters, 2019, 16: 025402. doi: 10.1088/1612-202X/aaf792
    [9] 于淼, 金光勇, 王超. 高峰值功率KDP晶体四倍频266 nm紫外激光器[J]. 强激光与粒子束, 2015, 27:041003. (Yu Miao, Jin Guangyong, Wang Chao. High peak power fourth harmonic 266 nm UV laser using a KDP crystal[J]. High Power Laser and Particle Beams, 2015, 27: 041003 doi: 10.11884/HPLPB201527.041003
    [10] Mero M, Petrov V. High-power, few-cycle, angular dispersion compensated mid-infrared pulses from a noncollinear optical parametric amplifier[J]. IEEE Photonics Journal, 2017, 9: 3200408.
    [11] Richter T, Schmidt-Langhorst C, Elschner R, et al. Distributed 1-Tb/s all-optical aggregation capacity in 125-GHz optical bandwidth by frequency conversion in fiber[C]//Proceedings of the 2015 European Conference on Optical Communication. 2015.
    [12] 王芳, 李富全, 贾怀庭, 等. 兼容多波长及多脉宽输出的频率转换系统设计[J]. 强激光与粒子束, 2015, 27:032018. (Wang Fang, Li Fuquan, Jia Huaiting, et al. Design of compatible harmonic generation system for multi wavelength and multiple pulse-width laser output[J]. High Power Laser and Particle Beams, 2015, 27: 032018 doi: 10.11884/HPLPB201527.032018
    [13] Zhu Heyuan, Wang Tao, Zheng Wanguo, et al. Efficient second harmonic generation of femtosecond laser at 1 μm[J]. Optics Express, 2004, 12(10): 2150-2155. doi: 10.1364/OPEX.12.002150
    [14] Chen Ying, Yuan Peng, Qian Liejia, et al. Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: glass lasers[J]. Optics Communications, 2010, 283(13): 2737-2741. doi: 10.1016/j.optcom.2010.03.008
    [15] 任广森, 孙全, 吴武明, 等. 径向偏振调制对聚焦光斑匀滑及偏振特性的影响[J]. 强激光与粒子束, 2015, 27:122008. (Ren Guangsen, Sun Quan, Wu Wuming, et al. Effect of radial polarization modulation on smoothing and polarization properties of focal speckle[J]. High Power Laser and Particle Beams, 2015, 27: 122008 doi: 10.11884/HPLPB201527.122008
    [16] Néauport J, Journot E, Gaborit G, et al. Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities[J]. Applied Optics, 2005, 44(16): 3143-3152. doi: 10.1364/AO.44.003143
    [17] Cui Yong, Gao Yanqi, Rao Daxing, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
  • 加载中
图(9)
计量
  • 文章访问数:  813
  • HTML全文浏览量:  415
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-06-06
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回