留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均匀液滴尺寸及间距的实验研究

薛松龄 王泽鸣 柴宝华 毕可明 冯波 龙俞伊

薛松龄, 王泽鸣, 柴宝华, 等. 均匀液滴尺寸及间距的实验研究[J]. 强激光与粒子束, 2021, 33: 076002. doi: 10.11884/HPLPB202133.210077
引用本文: 薛松龄, 王泽鸣, 柴宝华, 等. 均匀液滴尺寸及间距的实验研究[J]. 强激光与粒子束, 2021, 33: 076002. doi: 10.11884/HPLPB202133.210077
Xue Songling, Wang Zeming, Chai Baohua, et al. Experimental study of uniform droplets size and space[J]. High Power Laser and Particle Beams, 2021, 33: 076002. doi: 10.11884/HPLPB202133.210077
Citation: Xue Songling, Wang Zeming, Chai Baohua, et al. Experimental study of uniform droplets size and space[J]. High Power Laser and Particle Beams, 2021, 33: 076002. doi: 10.11884/HPLPB202133.210077

均匀液滴尺寸及间距的实验研究

doi: 10.11884/HPLPB202133.210077
详细信息
    作者简介:

    薛松龄(1981—),女,硕士,从事空间热排放技术研究

  • 中图分类号: V41

Experimental study of uniform droplets size and space

  • 摘要: 液滴发生器产生液滴的尺寸和间距影响液滴层的辐射和蒸发特性,液滴尺寸及间距的可控性值得重点关注。根据Weber的射流不稳定修正方程,确定了均匀液滴流产生的无量纲波数及扰动频率范围,结合射流质量守恒,分析了均匀液滴流中液滴的尺寸和间距与无量纲波数的关系。在不同喷孔直径和射流压力下,对理论和实验结果进行了对比,验证了液滴尺寸和液滴间距的理论计算结果,为液滴层辐射蒸发特性的研究提供了依据。
  • 图  1  液滴发生器实验装置结构示意图

    Figure  1.  Structure diagram of droplet generator experimental device

    图  2  扰动增长率与无量纲波数的关系图

    Figure  2.  Relationship between disturbance growth rate and non-dimensional wavenumber

    图  3  液滴直径和间距与无量纲波数的关系

    Figure  3.  Relationship of droplet diameter and interval with non-dimensional wavenumber

    图  4  微孔直径为0.3 mm时液滴直径的理论计算与试验结果对比

    Figure  4.  Comparison of droplet diameter between theoretical and experimental results with 0.3 mm orifice diameter

    图  5  微孔直径为0.3 mm时液滴间距的理论计算与试验结果对比

    Figure  5.  Comparison of droplet interval between theoretical and experimental results with 0.3 mm orifice diameter

    图  6  微孔直径为0.2 mm时液滴直径的理论计算与试验结果对比

    Figure  6.  Comparison of droplet diameter between theoretical and experimental results with 0.2 mm orifice diameter

    图  7  微孔直径为0.2 mm时液滴间距的理论计算与试验结果对比

    Figure  7.  Comparison of droplet interval between theoretical and experimental results with 0.2 mm orifice diameter

    图  8  不同压力下液滴直径的理论计算与试验结果对比

    Figure  8.  Comparison of droplet diameter between theoretical and experimental results under different pressures

    图  9  不同压力下液滴间距的理论计算与试验结果对比

    Figure  9.  Comparison of droplet interval between theoretical and experimental results under different pressures

    表  1  工质参数

    Table  1.   Properties of working medium fluild

    density/(kg·m−3)coefficient of viscosity/(Pa·s) surface tension/(N·m−1)
    10700.04173 0.0373
    下载: 导出CSV

    表  2  不同频率下的均匀液滴生成结果

    Table  2.   Droplet formations under different frequencies

    frequency/kHzdroplet formations
    2.0
    2.2
    2.4
    2.6
    2.8
    3.0
    3.2
    下载: 导出CSV
  • [1] 苏著亭, 杨继才, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.

    Su Zhuting, Yang Jicai, Ke Guotu. Space nuclear power. Shanghai: Shanghai Jiao Tong University Press, 2016
    [2] Mattick A T, Hertzberg A. The liquid droplet radiator–An untralightweight heat rejection system for efficient energy conversion in space[J]. Acta Astronautica, 1982, 9(3): 165-172. doi: 10.1016/0094-5765(82)90084-4
    [3] Brown R F, Kosson R. Liquid droplet radiator sheet design considerations[C]//Advanced Energy Systems—Their Role in Our Future, American Nuclear Society. 1984: 330-338.
    [4] White K A. Liquid droplet radiator development status[C]//22nd Thermophysics Conference. 1987.
    [5] Rayleigh J W S. On the instability of jets[J]. Proceedings of the Royal Society of London Mathematical society, 1878, 10: 4-12.
    [6] 王景龙, 陈文武, 马月仁, 等. 均匀液滴的形成机理及实验研究[J]. 强激光与粒子束, 2006, 18(5):709-712. (Wang Jinglong, Chen Wenwu, Ma Yueren, et al. Study of the uniform droplet stream[J]. High Power Laser and Particle Beams, 2006, 18(5): 709-712
    [7] Crane L, Birch S, Mccormack P D. The effect of mechanical vibration on the breakup of a cylindrical water jet in air[J]. British Journal of Applied Physics, 1964, 15(6): 743-750. doi: 10.1088/0508-3443/15/6/319
    [8] Cline H E, Anthony T R. The effect of harmonics on the capillary instability of liquid jets[J]. Journal of Applied Physics, 1978, 49(6): 3203-3208. doi: 10.1063/1.325267
    [9] Totani T, Itami M, Nagata H, et al. Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity[J]. Microgravity Science and Technology, 2002, 13(2): 42-45. doi: 10.1007/BF02872070
    [10] 魏胜, 漆小波, 张占文, 等. 液滴发生器系统中流速及震荡频率的确定[J]. 强激光与粒子束, 2011, 23(7):1925-1928. (Wei Sheng, Qi Xiaobo, Zhang Zhanwen, et al. Determination of flow velocities and oscillation frequencies in liquid-droplet generator[J]. High Power Laser and Particle Beams, 2011, 23(7): 1925-1928 doi: 10.3788/HPLPB20112307.1925
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  706
  • HTML全文浏览量:  229
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-06-10
  • 网络出版日期:  2021-07-10
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回