留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双极性直线型变压器驱动源的研制

唐潇 孙文杰 何明祖 姚陈果 余亮 董守龙

唐潇, 孙文杰, 何明祖, 等. 双极性直线型变压器驱动源的研制[J]. 强激光与粒子束, 2021, 33: 065004. doi: 10.11884/HPLPB202133.210078
引用本文: 唐潇, 孙文杰, 何明祖, 等. 双极性直线型变压器驱动源的研制[J]. 强激光与粒子束, 2021, 33: 065004. doi: 10.11884/HPLPB202133.210078
Tang Xiao, Sun Wenjie, He Mingzu, et al. A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065004. doi: 10.11884/HPLPB202133.210078
Citation: Tang Xiao, Sun Wenjie, He Mingzu, et al. A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065004. doi: 10.11884/HPLPB202133.210078

双极性直线型变压器驱动源的研制

doi: 10.11884/HPLPB202133.210078
基金项目: 国家自然科学基金项目(51877022);国家自然科学基金青年基金项目(51807016)
详细信息
    作者简介:

    唐 潇(1994—),女,硕士研究生,主要从事脉冲功率技术及其生物医学应用研究

    通讯作者:

    董守龙(1989—),男,副教授,主要从事脉冲功率技术及其应用、电气设备在线监测与故障诊断技术、生物医学中的电工新技术及高电压新技术等研究

  • 中图分类号: TM81;TM83;TM89

A bipolar nanosecond pulse source based on liner transformer driver

  • 摘要: 针对双极性脉冲电压介质阻挡放电(DBD)的应用需求,提出了一种基于直线型变压器驱动源(LTD)的全固态双极性纳秒脉冲形成拓扑。脉冲产生期间各开关的驱动电路均可靠共地极大降低了高低压隔离需求,因此与传统单极性LTD一样理论上可实现脉冲子模块的无限制叠加以获得更高电压的双极性脉冲输出。各脉冲子模块上集成数量相等但具有相反电压极性的储能电容,使隔离磁心的励磁电流在不同脉冲极性下正负交变,有效提高了磁心的利用率,不再需要设置专门的磁通复位电路。最后研制了一套模块化紧凑型双极性LTD原理验证样机,可输出脉冲参数为:电压幅值0~±2 kV,脉冲电流80 A,脉冲宽度50~200 ns,所有脉冲参数可通过上位机灵活可调,通过增加LTD子模块数量可获得更高的脉冲电压。
  • 图  1  LTD电路原理

    Figure  1.  Basic structure of LTD

    图  2  全固态双极性LTD等效电路拓扑

    Figure  2.  Topology of solid-state bipolar LTD pulse generator equivalent circuit

    图  3  正极性放电电路图

    Figure  3.  Circuit of positive polarity discharge

    图  4  负极性放电电路图

    Figure  4.  Circuit of negative polarity discharge

    图  5  单模块正极性放电过程

    Figure  5.  Positive polarity discharge process of single module

    图  6  磁滞曲线图

    Figure  6.  Hysteresis curve

    图  7  单模块负极性放电过程

    Figure  7.  Negative polarity discharge process of single module

    图  8  样机系统图

    Figure  8.  Structure of prototype system

    图  9  样机图

    Figure  9.  Prototype image

    图  10  双极性LTD脉冲源典型的输出电压和电流波形

    Figure  10.  Typical voltage waveform and current waveform

    图  11  不同脉宽的输出电压波形

    Figure  11.  Output voltage of the pulse generator with variable width

    图  12  脉冲上升沿局部放大图

    Figure  12.  Local magnification of the rising edge of the pulse

    图  13  正/负极性脉冲不同延时波形图

    Figure  13.  Different delay waveforms of positive/negative polarity pulse

    图  14  高频双极性脉冲串

    Figure  14.  High frequency bipolar pulse train

    图  15  不同阻容负载测试波形

    Figure  15.  Pulse waveforms of different R-C loads

  • [1] 商克峰, 王美威, 鲁娜, 等. 沿面/体介质阻挡放电装置的放电及臭氧生成特性[J]. 高电压技术, 2021, 47(1):353-359. (Shang Kefeng, Wang Meiwei, Lu Na, et al. Discharge characteristics and ozone generation of surface/volume hybrid dielectric barrier discharge devices[J]. High Voltage Engineering, 2021, 47(1): 353-359
    [2] Yanallah K, Pontiga F, Fernández-Rueda A, et al. Experimental investigation and numerical modelling of positive corona discharge: ozone generation[J]. Journal of Physics D: Applied Physics, 2009, 42: 065202. doi: 10.1088/0022-3727/42/6/065202
    [3] 徐晗, 陈泽煜, 刘定新. 大气压冷等离子体处理水溶液: 液相活性粒子检测方法综述[J]. 电工技术学报, 2020, 35(17):3561-3582. (Xu Han, Chen Zeyu, Liu Dingxin. Aqueous solutions treated by cold atmospheric plasmas: a review of the detection methods of aqueous reactive species[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3561-3582
    [4] Kim G C, Kim G J, Park S R, et al. Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer[J]. Journal of Physics D: Applied Physics, 2009, 42: 032005. doi: 10.1088/0022-3727/42/3/032005
    [5] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [6] Peter S, Günther M, Hauschild D, et al. Low temperature plasma enhanced chemical vapor deposition of thin films combining mechanical stiffness, electrical insulation, and homogeneity in microcavities[J]. Journal of Applied Physics, 2010, 108: 043303. doi: 10.1063/1.3474989
    [7] Akishev Y, Grushin M, Napartovich A, et al. Novel AC and DC non-thermal Plasma sources for cold surface treatment of polymer films and fabrics at atmospheric pressure[J]. Plasmas and Polymers, 2002, 7(3): 261-289. doi: 10.1023/A:1019990508769
    [8] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16):3494-3503. (Wu Shilin, Yang Qing, Shao Tao. Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503
    [9] Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1): 168-185. doi: 10.2514/1.38113
    [10] 毛枚良, 江定武, 陈亮中, 等. 受DBD等离子体控制的低速流动数值模拟方法研究[J]. 空气动力学学报, 2011, 29(2):129-134, 162. (Mao Meiliang, Jiang Dingwu, Chen Liangzhong, et al. Study of numerical simulation method for low speed flow with DBD plasma[J]. Acta Aerodynamica Sinica, 2011, 29(2): 129-134, 162 doi: 10.3969/j.issn.0258-1825.2011.02.001
    [11] Moreau E, Debien A, Benard N, et al. Nanosecond-pulsed dielectric barrier discharge plasma actuator for airflow control along an NACA0015 airfoil at high Reynolds number[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2803-2811. doi: 10.1109/TPS.2016.2603226
    [12] Pendleton S J, Kastner J, Gutmark E, et al. Surface streamer discharge for plasma flow control using nanosecond pulsed power[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2072-2073. doi: 10.1109/TPS.2011.2138166
    [13] 李志军, 张雅雯, 高迎慧, 等. 级联型高压重复频率微秒脉冲源的研制[J]. 强激光与粒子束, 2019, 31:085001. (Li Zhijun, Zhang Yawen, Gao Yinghui, et al. Development of cascade high voltage repetitive frequency microsecond pulse power supply[J]. High Power Laser and Particle Beams, 2019, 31: 085001 doi: 10.11884/HPLPB201931.190040
    [14] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24):35-44. (Dong Shoulong, Yao Chenguo, Yang Nan, et al. The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 35-44
    [15] Tang Kai, Wang Wenchun, Yang Dezheng, et al. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 112: 223-227. doi: 10.1016/j.saa.2013.04.050
    [16] 赵远涛, 张若兵, 王黎明, 等. 双极性脉冲电压下介质阻挡放电及其涤纶表面改性[J]. 高电压技术, 2009, 35(9):2238-2242. (Zhao Yuantao, Zhang Ruobing, Wang Liming, et al. Application of bipolar pulsed power to ADBD and terylene surface modification[J]. High Voltage Engineering, 2009, 35(9): 2238-2242
    [17] 米彦, 万佳仑, 卞昌浩, 等. 基于磁脉冲压缩的DBD高频双极性纳秒脉冲发生器的设计及其放电特性[J]. 电工技术学报, 2017, 32(24):244-256. (Mi Yan, Wan Jialun, Bian Changhao, et al. Design of DBD high-frequency bipolar nanosecond pulse generator based on magnetic pulse compression system and its discharging characteristics[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 244-256
    [18] Elgenedy M A, Darwish A, Ahmed S, et al. A transition arm modular multilevel universal pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 8979-8991. doi: 10.1109/TPEL.2017.2653243
    [19] Yao Chenguo, Dong Shoulong, Zhao Yajun, et al. High-frequency composite pulse generator based on full-bridge inverter and soft switching for biological applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2730-2737. doi: 10.1109/TDEI.2016.7736832
    [20] 熊兰, 杨子康, 胡国辉, 等. 一种采用全固态开关的高压双极性脉冲源[J]. 电机与控制学报, 2015, 19(9):73-80. (Xiong Lan, Yang Zikang, Hu Guohui, et al. One type of high voltage bipolar square pulser based on all-solid-state switch devices[J]. Electric Machines and Control, 2015, 19(9): 73-80
    [21] Kim J H, Min B D, Shenderey S, et al. High voltage Marx generator implementation using IGBT stacks[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 931-936. doi: 10.1109/TDEI.2007.4286528
    [22] Biela J, Aggeler D, Bortis D, et al. Balancing circuit for a 5-kV/50-ns pulsed-power switch based on SiC-JFET super cascode[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2554-2560. doi: 10.1109/TPS.2011.2169090
    [23] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806. (Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806
    [24] Sakamoto T, Akiyama H. Solid-state dual Marx generator with a short pulsewidth[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2649-2653. doi: 10.1109/TPS.2013.2272946
    [25] Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
    [26] 饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33:0450. (Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 0450 doi: 10.11884/HPLPB202133.200323
  • 加载中
图(15)
计量
  • 文章访问数:  1138
  • HTML全文浏览量:  373
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-05-19
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回