留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变压器寄生参数和负载特性对高压脉冲波形的影响

朱振宇 吴淑群 卞伟杰 顾亚楠 张潮海

朱振宇, 吴淑群, 卞伟杰, 等. 变压器寄生参数和负载特性对高压脉冲波形的影响[J]. 强激光与粒子束, 2021, 33: 065007. doi: 10.11884/HPLPB202133.210086
引用本文: 朱振宇, 吴淑群, 卞伟杰, 等. 变压器寄生参数和负载特性对高压脉冲波形的影响[J]. 强激光与粒子束, 2021, 33: 065007. doi: 10.11884/HPLPB202133.210086
Zhu Zhenyu, Wu Shuqun, Bian Weijie, et al. Influence of transformer’s parasitic parameters and load characteristics on high-voltage pulse waveform[J]. High Power Laser and Particle Beams, 2021, 33: 065007. doi: 10.11884/HPLPB202133.210086
Citation: Zhu Zhenyu, Wu Shuqun, Bian Weijie, et al. Influence of transformer’s parasitic parameters and load characteristics on high-voltage pulse waveform[J]. High Power Laser and Particle Beams, 2021, 33: 065007. doi: 10.11884/HPLPB202133.210086

变压器寄生参数和负载特性对高压脉冲波形的影响

doi: 10.11884/HPLPB202133.210086
基金项目: 国家自然科学基金项目(51977110);中央高校基本科研业务费专项资金项目(NT2020007)
详细信息
    作者简介:

    朱振宇(1997—),男,硕士研究生,主要从事脉冲电源技术研究

    通讯作者:

    吴淑群(1988—),男,博士,教授,主要从事高电压与放电等离子体研究

  • 中图分类号: TM832

Influence of transformer’s parasitic parameters and load characteristics on high-voltage pulse waveform

  • 摘要: 构建了输出电压幅值为0~20 kV、脉冲重复频率为0.25~20 kHz的双极性高压脉冲电源实验平台,研究了变压器寄生参数与负载特性对输出脉冲波形的影响。采用等效电路复频域解析方法,分析了变压器寄生参数对输出脉冲波形的上升沿、平顶及下降沿的影响规律,并通过改变变压器绕线方案间接验证。发现变压器分布电容和漏感越大,输出脉冲波形上升沿与下降沿越平缓,过冲电压幅值越大,并采用脉冲变压器二次侧均匀密绕、一次侧均匀疏绕、高匝数的方案进行优化。进一步分析了纯阻性、阻容性或阻感性负载特性对输出高压脉冲波形的影响规律,发现电阻值增大(5~50 kΩ),过冲电压幅值增大,脉冲上升沿和下降沿变陡;当负载电阻回路串联小电容时,过冲电压幅值显著增大,而电容值高于一定值时输出脉冲波形恢复至与纯电阻波形一样;当负载电阻回路串联电感时,输出脉冲波形下降沿变平缓。
  • 图  1  高压脉冲电源系统电路原理图

    Figure  1.  Circuit schematic diagram of high voltage pulse power system

    图  2  高压脉冲电源系统电路实物图

    Figure  2.  Circuit prototype of high voltage pulse power supply system

    图  3  高压脉冲电源系统输出双极性脉冲电压波形图

    Figure  3.  Output bipolar pulse voltage waveform of high voltage pulse power supply system

    图  4  脉冲变压器等值电路图

    Figure  4.  Equivalent circuit diagram of pulse transformer

    图  5  脉冲上升沿期间标准无量纲曲线

    Figure  5.  Standard dimensionless curve during rising edge of pulse

    图  6  脉冲平顶期间标准无量纲曲线

    Figure  6.  Standard dimensionless curve during pulse flattening

    图  7  脉冲下降沿期间标准无量纲曲线

    Figure  7.  Standard dimensionless curve during falling edge of pulse

    图  8  不同绕制情况下输出正脉冲波形对比

    Figure  8.  Comparison of output positive pulse waveforms under different winding conditions

    图  9  阻性负载下输出正脉冲电压仿真和实验波形

    Figure  9.  Simulation and experimental waveform of output positive pulse under resistive load

    图  10  阻容性负载下输出正脉冲及电容上电压仿真波形

    Figure  10.  Simulation of output positive pulse and voltage on capacitor under resistive and capacitive load

    图  11  阻容性负载下输出正脉冲及电容上电压实验波形

    Figure  11.  Output positive pulse experimental voltage waveform under resistive capacitive load

    图  12  阻感性负载下输出正脉冲及电感上电压仿真波形

    Figure  12.  Output positive pulse experimental voltage waveform under resistive inductive load

    图  13  阻感性负载下输出正脉冲及电感上电压实验波形

    Figure  13.  Output positive pulse experimental voltage waveform under resistive inductive load

  • [1] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. (Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [2] 熊紫兰, 卢新培, 鲜于斌, 等. 大气压低温等离子体射流及其生物医学应用[J]. 科技导报, 2010, 28(15):97-105. (Xiong Zilan, Lu Xinpei, Xian Yubin, et al. Atmospheric pressure low temperature plasma jets and their biomedical applications[J]. Science & Technology Review, 2010, 28(15): 97-105
    [3] 米彦, 苟家喜, 刘露露, 等. 脉冲介质阻挡放电等离子体改性对BN/EP复合材料击穿强度和热导率的影响[J]. 电工技术学报, 2020, 35(18):3949-3959. (Mi Yan, Gou Jiaxi, Liu Lulu, et al. Effect of pulse dielectric barrier discharge plasma modification on breakdown strength and thermal conductivity of BN/EP composites[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3949-3959
    [4] Zhao Guangyin, Li Yinghong, Liang Hua, et al. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators[J]. Chinese Journal of Aeronautics, 2015, 28(2): 368-376. doi: 10.1016/j.cja.2014.12.036
    [5] 聂万胜, 周思引, 车学科. 纳秒脉冲放电等离子体助燃技术研究进展[J]. 高电压技术, 2017, 43(6):1749-1758. (Nie Wansheng, Zhou Siyin, Che Xueke. Review of plasma assisted combustion technology by nanosecond pulsed discharge[J]. High Voltage Engineering, 2017, 43(6): 1749-1758
    [6] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [7] Deng Jianjun, Shi Jinshui, Xie Weiping, et al. Overview of pulsed power research at CAEP[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2760-2765. doi: 10.1109/TPS.2015.2452192
    [8] 王秉卓, 司剑飞, 于春风. 基于脉冲功率技术的高压电场感应取能设计[J]. 电力工程技术, 2019, 38(6):160-166. (Wang Bingzhuo, Si Jianfei, Yu Chunfeng. A design of high voltage electric-field induction energy-acquisition based on pulsed power technology[J]. Electric Power Engineering Technology, 2019, 38(6): 160-166
    [9] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [10] Liu Kefu, Luo Yan, Qiu Jian. A repetitive high voltage pulse adder based on solid state switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1076-1080. doi: 10.1109/TDEI.2009.5211857
    [11] 饶俊峰, 李恩成, 王永刚, 等. 自触发驱动的全固态Marx发生器[J]. 强激光与粒子束, 2021, 33:025001. (Rao Junfeng, Li Encheng, Wang Yonggang, et al. Self-triggering all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2021, 33: 025001
    [12] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806. (Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806
    [13] 饶俊峰, 李成建, 李孜, 等. 全固态高重频高压脉冲电源[J]. 强激光与粒子束, 2019, 31:035001. (Rao Junfeng, Li Chenjian, Li Zi, et al. All solid state high-frequency and high voltage pulsed power supply[J]. High Power Laser and Particle Beams, 2019, 31: 035001 doi: 10.11884/HPLPB201931.190005
    [14] Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
    [15] Redondo L M, Silva J F, Margato E. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (<1 kV) and series connected step-up (1:10) transformers[J]. Review of Scientific Instruments, 2007, 78: 034702. doi: 10.1063/1.2709743
    [16] Wang Xia, Huang Qinghua, Xiong Lin, et al. A compact all-solid-state repetitive pulsed power modulator based on Marx generator and pulse transformer[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 2072-2078. doi: 10.1109/TPS.2018.2837021
    [17] Wang Yonggang, Tong Liqing, Liu Kefu, et al. Repetitive high-voltage pulse modulator using bipolar Marx generator combined with pulse transformer[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3340-3347. doi: 10.1109/TPS.2018.2844328
    [18] Wu Zhaokang, Chen Xiyou, Mu Xianmin. Bipolar Marx circuit based on double transformers[C]//2020 5th Asia Conference on Power and Electrical Engineering (ACPEE). 2020: 1875-1879.
    [19] 孙毅超, 丁楠木, 王琦. 基于共载波调制的功率复合型模块化多电平固态变压器[J]. 电力工程技术, 2020, 39(4):2-8. (Sun Yichao, Ding Nanmu, Wang Qi. Power integrated modular multilevel solid-state transformer with common carrier modulation[J]. Electric Power Engineering Technology, 2020, 39(4): 2-8
    [20] 高旭泽, 段然, 任明, 等. 长段电缆中局部放电脉冲信号的传输特性及耦合研究[J]. 电力工程技术, 2020, 39(5):2-9. (Gao Xuze, Duan Ran, Ren Ming, et al. Transmission characteristics and coupling of partial discharge pulse signals in long cables[J]. Electric Power Engineering Technology, 2020, 39(5): 2-9
    [21] 郝玲艳, 李清泉, 秦冰阳, 等. 纳秒脉冲电源作用下沿面介质阻挡放电等离子体激励器的特性[J]. 高电压技术, 2016, 42(9):2936-2942. (Hao Lingyan, Li Qingquan, Qin Bingyang, et al. Characteristics of surface dielectric barrier discharge plasma actuator under the nanosecond pulse voltage[J]. High Voltage Engineering, 2016, 42(9): 2936-2942
    [22] 王瑞华. 脉冲变压器设计[M]. 北京: 科学出版社, 1996.

    Wang Ruihua. Design of pulse transformer[M]. Beijing: Science Press, 1996
    [23] ANSI/IEEE Std 390-1987, IEEE standard for pulse transformers[S].
    [24] Bortis D, Ortiz G, Kolar J W, et al. Design procedure for compact pulse transformers with rectangular pulse shape and fast rise times[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1171-1180. doi: 10.1109/TDEI.2011.5976112
    [25] Redondo L M, Silva J F, Margato E. Pulse shape improvement in core-type high-voltage pulse transformers with auxiliary windings[J]. IEEE Transactions on Magnetics, 2007, 43(5): 1973-1982. doi: 10.1109/TMAG.2006.888744
    [26] Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [27] 章程, 方志, 赵龙章, 等. 基于SIMULINK的介质阻挡放电的仿真[J]. 高压电器, 2007, 43(3):218-221. (Zhang Cheng, Fang Zhi, Zhao Longzhang, et al. Simulation of dielectric barrier discharge using SIMULINK[J]. High Voltage Apparatus, 2007, 43(3): 218-221 doi: 10.3969/j.issn.1001-1609.2007.03.019
    [28] 郝世强, 刘星亮, 李武华, 等. 介质阻挡放电的分段负载模型和断续模式能量压缩方法[J]. 高电压技术, 2018, 44(9):3058-3067. (Hao Shiqiang, Liu Xingliang, Li Wuhua, et al. Discontinuous-current-mode energy compression method of dielectric barrier discharge with piecewise load model[J]. High Voltage Engineering, 2018, 44(9): 3058-3067
    [29] 祁泽武, 张伟, 李平林, 等. DBD高频高压放电电源的设计及其放电特性[J]. 高电压技术, 2016, 42(3):807-812. (Qi Zewu, Zhang Wei, Li Pinglin, et al. Design of DBD high-frequency high-voltage power supply and its discharging characteristics[J]. High Voltage Engineering, 2016, 42(3): 807-812
  • 加载中
图(13)
计量
  • 文章访问数:  1095
  • HTML全文浏览量:  270
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-05-24
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回