留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
冯国英, 郑世杰, 谭建昌, 等. 光纤激光模场及表征技术进展[J]. 强激光与粒子束, 2021, 33: 031001. doi: 10.11884/HPLPB202133.210097
引用本文: 冯国英, 郑世杰, 谭建昌, 等. 光纤激光模场及表征技术进展[J]. 强激光与粒子束, 2021, 33: 031001. doi: 10.11884/HPLPB202133.210097
Feng Guoying, Zheng Shijie, Tan Jianchang, et al. Progress on mode field distribution and characterization technology of the optical fiber laser[J]. High Power Laser and Particle Beams, 2021, 33: 031001. doi: 10.11884/HPLPB202133.210097
Citation: Feng Guoying, Zheng Shijie, Tan Jianchang, et al. Progress on mode field distribution and characterization technology of the optical fiber laser[J]. High Power Laser and Particle Beams, 2021, 33: 031001. doi: 10.11884/HPLPB202133.210097

光纤激光模场及表征技术进展

doi: 10.11884/HPLPB202133.210097
基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金项目(U1730141)
详细信息
    作者简介:

    冯国英(1969—),女,教授,博士生导师,研究方向为新型激光技术、微纳光电子生物传感技术;guoing_feng@scu.edu.cn

    通讯作者:

    李 玮(1982—),女,副教授,研究方向为光纤通信技术、激光超连续谱及应用;weili@scu.edu.cn

  • 中图分类号: TN249

Progress on mode field distribution and characterization technology of the optical fiber laser

  • 摘要:

    在光纤通信、光纤激光器和光纤传感等领域的实际应用中,需要重点关注光纤中的模式问题。模分复用是提高光通信信息容量的有效方法,模间干涉是大多数光纤传感的基本方法,高功率光纤激光的光束质量控制的关键技术之一就是模式控制,因此,对光纤模式理论、模式产生及转换、模式表征技术开展研究具有重要的研究意义和实际应用价值。论文讨论了光纤的模式及光束质量,分析了多种模式发生及转换的方法,将模式表征方法归结为非相干、相干和低相干测量法。光纤模式表征是目前的研究热点,在多种表征方法中,空间和频谱成像法(S2)和双重傅里叶变换法(F2)具有显著的优越性,可不需要提前知道光纤的几何参数,就可获得模场分布、模式功率占比、群时延等特性。研究表明F2法更适合于表征高功率光纤激光的模场特性。

  • 图  1  求解光纤中传输模式的流程图

    Figure  1.  Flow chart of solving propagation modes in optical fibers

    图  2  阶跃光纤示意图

    Figure  2.  Schematic diagram of the step-index optical fiber

    图  3  阶跃光纤中LPmn模式与对应的矢量模

    Figure  3.  LPmn modes and corresponding vector modes in step-index optical fibers

    图  4  光纤输出LPmn模式的近场强度分布

    Figure  4.  Near-field intensity distributions of LPmn modes from the optical fiber output end

    图  5  光纤输出LPmn模式的远场强度分布

    Figure  5.  Far-field intensity distributions of LPmn modes from the optical fiber output end

    图  6  LP11模式、LP12模式和LP13模式的M2参数随旋转角变化的曲线及LPmn模式光束的M曲线

    Figure  6.  Curves of the M2 parameter of LP11 mode, LP12 mode and LP13 mode with the rotation angle and the M curves of the LPmn modes

    图  7  LPmn模式的光束质量列表

    Figure  7.  List of beam quality of LPmn modes

    图  8  基于球锥等微结构的光纤模式发生器

    Figure  8.  Optical fiber mode generators based on spherical cone-shaped and other microstructures

    图  9  模式选择耦合器

    Figure  9.  Mode selection coupler

    图  10  基于选择耦合器的模式可切换的掺饵光纤调Q激光器[15]

    Figure  10.  Er-doped fiber Q-switched laser with switchable modes based on the selective coupler[15]

    图  11  多波长高阶模振荡的少模全光纤环形激光器[16]

    Figure  11.  Few-modes all fiber ring laser with multiwavelength and high order mode oscillation[16]

    图  12  非相干法测量激光模场的解析CCD图像法[17]

    Figure  12.  Analytical CCD image method for incoherent measurement of laser mode distributions[17]

    图  13  基于深度学习的模式测量

    Figure  13.  Mode measurement based on deep learning

    图  14  相干法测量激光模场

    Figure  14.  Coherent method for laser mode field measurement

    图  15  基于迈克尔逊干涉的低相干法[24]

    Figure  15.  Low-coherence method based on Michelson interference[24]

    图  16  C2[25-26]

    Figure  16.  Cross-correlation C2 method[25-26]

    图  17  空间和频谱分辨成像法(S2[27- 29]

    Figure  17.  Spatial and spectrum-resolved imaging method (S2)[27-29]

    图  18  空间和光谱双重傅里叶变换法(F2)测量装置及结果[30]

    Figure  18.  Laser modes’ measurement setup and results based on spatial and spectral double Fourier transform method (F2)[30]

  • [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. IEE Proceedings, 1986, 133(3): 191-198.
    [2] Yoda H, Polynkin P, Mansuripur M. Beam quality factor of higher order modes in a step-index fiber[J]. Journal of Lightwave Technology, 2006, 24(3): 1350-1355. doi: 10.1109/JLT.2005.863337
    [3] Wielandy S. Implications of higher-order mode content in large mode area fibers with good beam quality[J]. Optical Express, 2007, 15(23): 15402-15409. doi: 10.1364/OE.15.015402
    [4] Fu Yuqing, Feng Guoying, Zhang Dayong, et al. Beam quality factor of mixed modes emerging from a multimode step-index fiber[J]. Optik, 2010, 121(5): 452-456. doi: 10.1016/j.ijleo.2008.08.003
    [5] 冯国英, 周寿桓, 高春清. 激光模场及光束质量表征[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan, Gao Chunqing. Laser mode field and beam quality characterization[M]. Beijing: National Defense Industry Press, 2016
    [6] 冯国英, 周寿桓. 激光束的强度矩描述[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan, Gao Chunqing. Characterization of intensity moment of laser beam[M]. Beijing: National Defense Industry Press, 2016.
    [7] Xian Pei, Feng Guoying, Zhou Shouhuan. A compact and stable temperature sensor based on a gourd-shaped microfiber[J]. IEEE Photonics Technology Letters, 2016, 28(1): 95-98. doi: 10.1109/LPT.2015.2487281
    [8] Xian Pei, Feng Guoying, Ju Yao, et al. Single-mode all-fiber structured modal interference for temperature and refractive index sensing[J]. Laser Physics Letters, 2017, 14: 085101. doi: 10.1088/1612-202X/aa779c
    [9] Xian Pei, Feng Guoying, Zhou Shouhuan. A microsphere-taper cascading structured microfiber for temperature sensing[C]//Proc of SPIE. 2016: 98861H.
    [10] Xian Pei, Feng Guoying, Dai Shenyu, et al. Asymmetric structured microfiber-based temperature sensor[J]. Optical Engineering, 2017, 56: 047106. doi: 10.1117/1.OE.56.4.047106
    [11] Tan Jianchang, Feng Guoying, Liang Jingchuan, et al. Optical fiber temperature sensor based on dumbbell-shaped Mach–Zehnder interferometer[J]. Optical Engineering, 2018, 57: 017112.
    [12] Tan Jianchang, Feng Guoying, Zhang Shulin, et al. Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a Mach-Zehnder interferometer[J]. Laser Physics, 2018, 28: 075102. doi: 10.1088/1555-6611/aabb26
    [13] Yao Han, Shi Fan, Wu Zhaoyang, et al. A mode generator and multiplexer at visible wavelength based on all-fiber mode selective coupler[J]. Nanophotonics, 2020, 9(4): 973-981. doi: 10.1515/nanoph-2020-0050
    [14] Igarashi K, Park K J, Tsuritani T, et al. All-fiber-based selective mode multiplexer and demultiplexer for weakly-coupled mode-division multiplexed systems[J]. Optics Communications, 2018, 408: 58-62. doi: 10.1016/j.optcom.2017.08.049
    [15] 程培康, 石帆, 王腾, 等. 基于模式选择耦合器的光纤模式可切换调Q激光器[J]. 中国激光, 2020, 47:1201001. (Cheng Peikang, Shi Fan, Wang Teng, et al. Fiber mode switchable Q-switched laser based on mode selective coupler[J]. Chinese Journal of Lasers, 2020, 47: 1201001 doi: 10.3788/CJL202047.1201001
    [16] Wang Teng, Yang Ao, Shi Fan, et al. High-order mode lasing in all-FMF laser cavities[J]. Photonics Research, 2018, 7(1): 42-49.
    [17] Skorobogatiy M, Anastassiou C, Johnson S G, et al. Quantitative characterization of higher-order mode converters in weakly multimoded fibers[J]. Optics Express, 2003, 11(22): 2838-2847. doi: 10.1364/OE.11.002838
    [18] An Yi, Huang Liangjin, Li Jun, et al. Learning to decompose the modes in few-mode fibers with deep convolutional neural network[J]. Optics Express, 2019, 27(7): 10127-10137. doi: 10.1364/OE.27.010127
    [19] An Yi, Huang Liangjin, Li Jun, et al. Deep learning-based real-time mode decomposition for multimode fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26: 4400806.
    [20] An Yi, Huang Liangjin, Li Lei, et al. Numerical mode decomposition for multimode fiber: from multi-variable optimization to deep learning[J]. Optical Fiber Technology, 2019, 52: 101960. doi: 10.1016/j.yofte.2019.101960
    [21] Chen Fan, Zhao Shubin, Wang Qiang, et al. Modal decomposition of a fibre laser beam based on the push-broom stochastic parallel gradient descent algorithm[J]. Optics Communications, 2021, 481: 126538. doi: 10.1016/j.optcom.2020.126538
    [22] Kaiser T, Flamm D, Schröter S, et al. Complete modal decomposition for optical fibers using CGH-based correlation filters[J]. Optics Express, 2009, 17(11): 9347-9356. doi: 10.1364/OE.17.009347
    [23] Andermahr N, Theeg T, Fallnich C. Novel approach for polarization-sensitive measurements of transverse modes in few-mode optical fibers[J]. Applied Physics B, 2008, 91(2): 353-357. doi: 10.1007/s00340-008-3011-9
    [24] Ma Yuzhao, Sych Y, Onishchukov G, et al. Fiber-modes and fiber-anisotropy characterization using low-coherence interferometry[J]. Applied Physics B, 2009, 96(2/3): 345-353.
    [25] Schimpf D N, Barankov R A, Ramachandran S. Cross-correlated (C2) imaging of fiber and waveguide modes[J]. Optics Express, 2011, 19(14): 13008-13019. doi: 10.1364/OE.19.013008
    [26] Yan Cheng, Huang Sujuan, Yin Weihao, et al. Modal content analysis of optical fiber based on cross-correlated and off-axis digital holography[J]. Optical Fiber Technology, 2021, 62: 102475. doi: 10.1016/j.yofte.2021.102475
    [27] Nicholson J W, Yablon Y D, Ramachandran S, et al. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers[J]. Optics Express, 2008, 16(10): 7233-7243. doi: 10.1364/OE.16.007233
    [28] Nicholson J W, Yablon A D, Fini J M, et al. Measuring the modal content of large-mode-area fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 61-70. doi: 10.1109/JSTQE.2008.2010239
    [29] Nguyen D M, Blin S, Nguyen T N, et al. Modal decomposition technique for multimode fibers[J]. Applied Optics, 2012, 51(4): 450-456. doi: 10.1364/AO.51.000450
    [30] 张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析[J]. 物理学报, 2016, 65:154202. (Zhang Shulin, Feng Guoying, Zhou Shouhuan. Fiber modal content analysis based on spatial and spectral Fourier transform[J]. Acta Physica Sinica, 2016, 65: 154202 doi: 10.7498/aps.65.154202
  • 加载中
图(21)
计量
  • 文章访问数:  1900
  • HTML全文浏览量:  546
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 修回日期:  2021-03-05
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回