留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率780 nm半导体激光器的设计与制备

何林安 周坤 张亮 李弋 杜维川 胡耀 高松信 唐淳

何林安, 周坤, 张亮, 等. 大功率780 nm半导体激光器的设计与制备[J]. 强激光与粒子束, 2021, 33: 091001. doi: 10.11884/HPLPB202133.210099
引用本文: 何林安, 周坤, 张亮, 等. 大功率780 nm半导体激光器的设计与制备[J]. 强激光与粒子束, 2021, 33: 091001. doi: 10.11884/HPLPB202133.210099
He Lin’an, Zhou Kun, Zhang Liang, et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33: 091001. doi: 10.11884/HPLPB202133.210099
Citation: He Lin’an, Zhou Kun, Zhang Liang, et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33: 091001. doi: 10.11884/HPLPB202133.210099

大功率780 nm半导体激光器的设计与制备

doi: 10.11884/HPLPB202133.210099
基金项目: 科技部重点研发项目(2018YFB1107302)
详细信息
    作者简介:

    何林安,sdhelinan@126.com

  • 中图分类号: TN248.4

Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm

  • 摘要: 设计并制备了一款780 nm半导体激光器,并进行了外腔反馈锁模研究。利用金属有机化学气相沉积技术制备了激光器外延层,采用GaAsP/GaInP作为量子阱/波导层有源区,限制层采用低折射率AlGaInP材料。采用超高真空解理钝化技术,在激光器腔面蒸镀无定形ZnSe钝化层。未钝化器件在输出功率2.5 W时发生腔面灾变损伤(COD),钝化后器件未发生COD现象,电流在10 A时输出功率10.1 W,电光转换效率54%。体布拉格光栅(VBG)外腔锁定前后,器件的光谱半峰全宽分别为2.6 nm和0.06 nm,VBG变温调控波长范围约230 pm。
  • 图  1  780 nm半导体激光器的折射率及光场分布

    Figure  1.  Refractive index and mode distribution diagram of 780 nm semiconductor laser

    图  2  780 nm半导体激光器的功率效率曲线

    Figure  2.  Power and wall-plug efficiency curves of 780 nm semiconductor laser

    图  3  780 nm半导体激光器的远场与近场

    Figure  3.  Far field and near field of 780 nm semiconductor laser

    图  4  780 nm半导体激光器VBG锁模前后功率效率曲线和光谱分布

    Figure  4.  Power, conversion efficiency and spectrum curves of the 780 nm semiconductor laser before and after mode locked by VBG

    图  5  不同VBG加热电流下的780 nm半导体激光器光谱

    Figure  5.  Spectrum curves of the 780 nm semiconductor laser at different VBG heating current

  • [1] Rotondaro M D, Zhdanov B V, Shaffer M K, et al. Narrowband diode laser pump module for pumping alkali vapors[J]. Optics Express, 2018, 26(8): 9792-9797. doi: 10.1364/OE.26.009792
    [2] Koenning T, McCormick D, Irwin D, et al. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth[C]//Proceedings of SPIE 9733, High-Power Diode Laser Technology and Applications XIV. 2016: 97330E.
    [3] Vinokurov D A, Zorina S A, Kapitonov V A, et al. MOCVD GaInAsP/GaInP/AlGaInP laser structures emitting at 780 nm[J]. Semiconductors, 2003, 37(12): 1421-1424. doi: 10.1134/1.1634665
    [4] Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92. doi: 10.1109/JSTQE.2008.2010719
    [5] Pitz G A, Anderson M D. Recent advances in optically pumped alkali lasers[J]. Applied Physics Reviews, 2017, 4: 041101. doi: 10.1063/1.5006913
    [6] Keaveney J, Hamlyn W J, Adams C S, et al. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth < 400 kHz and long-term stability of < 1 MHz[J]. Review of Scientific Instruments, 2016, 87: 095111. doi: 10.1063/1.4963230
    [7] Hempel M, Tomm J W, Ziegler M, et al. Catastrophic optical damage at front and rear facets of diode lasers[J]. Applied Physics Letters, 2010, 97: 231101. doi: 10.1063/1.3524235
    [8] Sanayeh M B, Brick P, Schmid W, et al. The physics of catastrophic optical damage in high-power AlGaInP laser diodes[C]//Proceedings of SPIE 6997, Semiconductor Lasers and Laser Dynamics III. 2008: 699703.
    [9] Christopher H, Kovalchuk E V, Wenzel H, et al. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780 nm[J]. Applied Optics, 2017, 56(19): 5566-5572. doi: 10.1364/AO.56.005566
    [10] Sanayeh M B, Brick P, Schmid W, et al. Temperature-power dependence of catastrophic optical damage in AlGaInP laser diodes[J]. Applied Physics Letters, 2007, 91: 041115. doi: 10.1063/1.2760143
    [11] 朱振, 肖成峰, 夏伟, 等. 大功率640 nm红光半导体激光器的设计及制备[J]. 激光与光电子学进展, 2018, 55:081403. (Zhu Zhen, Xiao Chengfeng, Xia Wei, et al. Design and fabrication of high power 640 nm red laser diodes[J]. Laser & Optoelectronics Progress, 2018, 55: 081403
    [12] Bao Ling, Wang Jun, Devito M, et al. Performance and reliability of high power 7xx nm laser diodes[C]//Proceedings of SPIE 7953, Novel In-Plane Semiconductor Lasers X. 2011: 79531B.
    [13] Liu Guoli, Lehkonen S, Li Jingwei, et al. High power and reliable 793nm single emitter and T-bar for thulium-doped fiber laser pumping[C]//Proceedings of SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126208.
    [14] Crump P, Wilkens M, Hübner M, et al. Efficient, high power 780 nm pumps for high energy class mid-infrared solid state lasers[C]//Proceedings of SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126204.
    [15] 田景玉, 张俊, 彭航宇, 等. 用于碱金属蒸汽激光器泵浦的窄线宽780 nm半导体激光源[J]. 发光学报, 2019, 40(9):1123-1129. (Tian Jingyu, Zhang Jun, Peng Hangyu, et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J]. Chinese Journal of Luminescence, 2019, 40(9): 1123-1129 doi: 10.3788/fgxb20194009.1123
    [16] Ressel P, Erbert G, Zeimer U, et al. Novel passivation process for the mirror facets of Al-free active-region high-power semiconductor diode lasers[J]. IEEE Photonics Technology Letters, 2005, 17(5): 962-964. doi: 10.1109/LPT.2005.846750
    [17] Koenning T, McCormick D, Irvin D, et al. Narrow-line fiber-coupled modules for DPAL pumping[C]//Proceedings of SPIE 9348, High-Power Diode Laser Technology and Applications XIII. 2015: 934805.
    [18] 李志永, 谭荣清, 徐程, 等. 用于铷蒸气激光泵浦的窄线宽阵列半导体激光器[J]. 强激光与粒子束, 2013, 25(4):875-878. (Li Zhiyong, Tan Rongqing, Xu Cheng, et al. Laser doide array with narrow linewidth for rubidium vapor laser pumping[J]. High Power Laser and Particle Beams, 2013, 25(4): 875-878 doi: 10.3788/HPLPB20132504.0875
    [19] Venus G B, Sevian A, Smirnov V I, et al. High-brightness narrow-line laser diode source with volume Bragg-grating feedback[C]//Proceedings of SPIE 5711, High-Power Diode Laser Technology and Applications III. 2005.
  • 加载中
图(5)
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  830
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 修回日期:  2021-08-18
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回