留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜镍合金丝电爆炸放电特性与时空演化行为

韩若愚 邓成志 冯娟 李琛 姚伟博 欧阳吉庭

韩若愚, 邓成志, 冯娟, 等. 铜镍合金丝电爆炸放电特性与时空演化行为[J]. 强激光与粒子束, 2021, 33: 065010. doi: 10.11884/HPLPB202133.210103
引用本文: 韩若愚, 邓成志, 冯娟, 等. 铜镍合金丝电爆炸放电特性与时空演化行为[J]. 强激光与粒子束, 2021, 33: 065010. doi: 10.11884/HPLPB202133.210103
Han Ruoyu, Deng Chengzhi, Feng Juan, et al. Discharge characteristics and spatial-temporal evolution of Cu-Ni alloy wire explosion[J]. High Power Laser and Particle Beams, 2021, 33: 065010. doi: 10.11884/HPLPB202133.210103
Citation: Han Ruoyu, Deng Chengzhi, Feng Juan, et al. Discharge characteristics and spatial-temporal evolution of Cu-Ni alloy wire explosion[J]. High Power Laser and Particle Beams, 2021, 33: 065010. doi: 10.11884/HPLPB202133.210103

铜镍合金丝电爆炸放电特性与时空演化行为

doi: 10.11884/HPLPB202133.210103
基金项目: 国家自然科学基金项目(51907007);中国博士后基金项目(2019M650511);强脉冲辐射环境模拟与效应国家重点实验室开放课题(SKLIPR1906)
详细信息
    作者简介:

    韩若愚(1991—),男,博士,副研究员,从事金属丝电爆炸、脉冲放电等离子体源与诊断研究

  • 中图分类号: TM89

Discharge characteristics and spatial-temporal evolution of Cu-Ni alloy wire explosion

  • 摘要: 脉冲电流驱动金属丝电爆炸可产生具有较高能量密度的等离子体,并伴随脉冲电磁辐射、强冲击波等效应,广泛应用于Z箍缩、电热化学武器、油气助采等领域;与纯金属相比,合金具备电阻率高、成分可调、相变复杂等特点,在电爆炸效应参数的调控方面具有很大潜力。开展了大气空气介质中铜、镍、铜镍(康铜)丝在微秒时间尺度电脉冲作用下电爆炸实验研究,通过放电参数与自辐射图像诊断,获取电爆炸过程放电参数与时空演变的特性规律,得到脉冲电流作用下合金电爆炸在相变与等离子体方面的特征。实验发现,在电爆炸早期,铜镍合金的高电阻率能够提高能量沉积效率:铜52%、镍74%、铜镍合金78%;而相爆开始后,合金丝负载则更接近纯镍丝负载性能。等离子体通道早期膨胀速率在5 mm/μs量级,随后迅速衰减;合金丝等离子体膨胀时间更久,击穿后平均电阻率上升缓慢,且等离子体辐射与金属爆炸产物在空间尺度上存在关联性。特别地,铜镍合金气溶胶分层同时具有横向和纵向特征(特征尺度10−1 mm),但整体较铜气溶胶更为均匀。
  • 图  1  电爆炸实验平台原理图

    Figure  1.  Schematics of the experimental setup and configurations

    图  2  空气中铜、镍与铜镍合金电爆炸典型放电波形(直径300 μm,长度2 cm,储能250 J)

    Figure  2.  Representative electrical waveforms of exploding 2-cm-long Cu, Ni, and constantan wires with diameters of 300 μm under 250 J stored energy in air

    图  3  空气中铜、镍与铜镍合金电爆炸自辐射时空演化图像(直径300 μm,长度2 cm,储能250 J)

    Figure  3.  High-speed images of exploding 2-cm-long Cu, Ni, and constantan wires with diameters of 300 μm under 250 J stored energy in air

    图  4  空气中铜、镍与铜镍合金电爆炸阴影图像(拍摄时间约为爆炸发生后10 μs,曝光时间约1 μs),电极间距为4 cm

    Figure  4.  Backlit images for single wire explosions of Cu, Ni, and Cu-Ni wire loads (around 10 μs after the explosion, exposure time 1 μs), the distance between two electrodes is 4-cm long

    图  5  空气中铜镍合金电爆炸典型放电波形(直径25~270 μm,长度2 cm,储能250 J)

    Figure  5.  Representative electrical waveforms of exploding 2-cm-long constantan wires under 250 J stored energy in air

    图  6  空气中铜镍合金电爆炸特性参数统计

    Figure  6.  Characteristic parameters of exploding 2-cm-long constantan wires with diameters of 25~270 μm under 250 J stored energy in air

    图  7  空气中铜镍合金电爆炸自辐射时空演化图像(长度2 cm,储能250 J)

    Figure  7.  High-speed images of exploding 2-cm-long constantan wires under 250 J stored energy in air

    表  1  放电参数结果统计

    Table  1.   Statistics of the discharge parameters above

    wire typeinitial calculated
    resistance R0
    maximum measured
    resistance Rmax
    maximum electric
    power Pmax/MW
    energy to vaporize
    the wire Ev/J
    deposited
    energy Ed/J
    overheating
    factor ξ
    total deposited
    energy Etotal/J
    300-μm Cu5.01×10−31.30±0.02166.0±3.578.2356.2±1.3~0.72117.4±1.6
    300-μm Ni2.21×10−21.15±0.01113.3±3.1106.6759.6±0.5~0.56121.6±1.7
    300-μm Cu-Ni1.35×10−11.28±0.02135.2±0.489.2656.8±1.5~0.64120.3±1.3
    下载: 导出CSV
  • [1] Chace W G, Moore H K. Exploding wires[M]. New York: Plenum Press, 1959.
    [2] 张永民, 姚伟博, 邱爱慈, 等. 金属丝电爆炸现象研究综述[J]. 高电压技术, 2019, 45(8):2668-2680. (Zhang Yongmin, Yao Weibo, Qiu Aici, et al. Review of wire electrical explosion phenomena[J]. High Voltage Engineering, 2019, 45(8): 2668-2680
    [3] 邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016.

    Qiu Aici. Pulsed power technology applications[M]. Xi’an: Shaanxi Science and Technology Press, 2016).
    [4] 高翔, 万元熙, 丁宁, 等. 可控核聚变科学技术前沿问题和进展[J]. 中国工程科学, 2018, 20(3):25-31. (Gao Xiang, Wan Yuanxi, Ding Ning, et al. Frontier issues and progress of controlled nuclear fusion science and technology[J]. Strategic Study of CAE, 2018, 20(3): 25-31
    [5] 王莹, 孙元章, 阮江军, 等. 脉冲功率科学与技术[M]. 汕头: 汕头大学出版社, 2010.

    Wang Ying, Sun Yuanzhang, Run Jiangjun, et al. Science and technology on pulsed power[M]. Shantou: Shantou University Press, 2010).
    [6] 王俞卫, 陈冬群, 张自成, 等. 基于爆磁压缩发生器的紧凑脉冲功率源(英文)[J]. 强激光与粒子束, 2019, 31:025002. (Wang Yuwei, Chen Dongqun, Zhang Zicheng, et al. Compact pulsed power source based on explosively driven magnetic flux compression generator[J]. High Power Laser and Particle Beams, 2019, 31: 025002 doi: 10.11884/HPLPB201931.180242
    [7] 王坤, 姜林村, 史宗谦, 等. 纳秒级铝单丝电爆炸过程中金属态-非金属态转变研究[J]. 中国电机工程学报, 2021, 41(8):2957-2964. (Wang Kun, Jiang Lincun, Shi Zongqian, et al. Metal-nonmetal transition in nanosecond electrical explosion of aluminum wires[J]. Proceedings of the CSEE, 2021, 41(8): 2957-2964
    [8] Pikuz S A, Sinars D B, Shelkovenko T A, et al. High energy density z-pinch plasma conditions with picosecond time resolution[J]. Physical Review Letters, 2002, 89: 035003. doi: 10.1103/PhysRevLett.89.035003
    [9] Ouyang Peixuan, Li Peijie, Leksina E G, et al. Effect of liquid properties on laser ablation of aluminum and titanium alloys[J]. Applied Surface Science, 2016, 360: 880-888. doi: 10.1016/j.apsusc.2015.11.080
    [10] Liao Qilong, Tannenbaum R, Wang Zhonglin. Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction[J]. The Journal of Physical Chemistry B, 2006, 110(29): 14262-14265. doi: 10.1021/jp0625154
    [11] Chace W G. Liquid behavior of exploding wires[J]. The Physics of Fluids, 1959, 2(2): 230-235. doi: 10.1063/1.1705912
    [12] Han Ruoyu, Wu Jiawei, Qiu Aici, et al. A platform for exploding wires in different media[J]. Review of Scientific Instruments, 2017, 88: 103504. doi: 10.1063/1.4996027
    [13] Tucker T J, Toth R P. EBW1: a computer code for the prediction of the behavior of electrical circuits containing exploding wire elements[R]. Albuquerque: USDOE, 1975.
    [14] Burtsev V A, Kalinin N V, Luchinski A V. Electrical explosion of conductors and its application in electro-physical installations[M]. Moscow: Energoatomizdat, 1990.
    [15] Tkachenko S I, Pikuz S A, Romanova V M, et al. Overvoltage pulse development upon electrical explosion of thin wires[J]. Journal of Physics D: Applied Physics, 2007, 40(6): 1742-1750. doi: 10.1088/0022-3727/40/6/022
    [16] Bigelmayr M, Pieterse P, Uhrlandt D. Energy dissipation and efficiency of exploding stainless steel wires of various lengths and diameters[J]. Journal of Physics D: Applied Physics, 2020, 54: 045202.
    [17] Zhao Junping, Xu Zhuo, Yan Wenyu, et al. Characteristics and diffusion of electrical explosion plasma of aluminum wire in argon gas[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 185-192. doi: 10.1109/TPS.2017.2651032
    [18] Han Ruoyu, Zhu Wanying, Wu Jiawei, et al. Spatial–temporal evolution of plasma radiation in electrical wire explosion: a morphological observation[J]. Journal of Physics D: Applied Physics, 2020, 53: 345201. doi: 10.1088/1361-6463/ab8b07
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  264
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-05-25
  • 网络出版日期:  2021-06-11
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回