留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非常规储层电脉冲共振增产技术研究与应用

康忠健 王聪 聂云良 邵在康 龚大建

康忠健, 王聪, 聂云良, 等. 非常规储层电脉冲共振增产技术研究与应用[J]. 强激光与粒子束, 2021, 33: 065009. doi: 10.11884/HPLPB202133.210113
引用本文: 康忠健, 王聪, 聂云良, 等. 非常规储层电脉冲共振增产技术研究与应用[J]. 强激光与粒子束, 2021, 33: 065009. doi: 10.11884/HPLPB202133.210113
Kang Zhongjian, Wang Cong, Nie Yunliang, et al. Research and application of electric pulse resonance stimulation technology for unconventional reservoir[J]. High Power Laser and Particle Beams, 2021, 33: 065009. doi: 10.11884/HPLPB202133.210113
Citation: Kang Zhongjian, Wang Cong, Nie Yunliang, et al. Research and application of electric pulse resonance stimulation technology for unconventional reservoir[J]. High Power Laser and Particle Beams, 2021, 33: 065009. doi: 10.11884/HPLPB202133.210113

非常规储层电脉冲共振增产技术研究与应用

doi: 10.11884/HPLPB202133.210113
基金项目: 国家科技重大专项(2016ZX05034004)
详细信息
    作者简介:

    康忠健(1971—),男,博士,教授,从事脉冲功率与油气增产研究

    通讯作者:

    王 聪(1998—),男,硕士研究生,从事脉冲功率与电磁干扰研究

  • 中图分类号: TE934

Research and application of electric pulse resonance stimulation technology for unconventional reservoir

  • 摘要: 为了提高非常规油气的产量,解决非常规油气储层改善的难题,对储层的电脉冲共振技术进行研究,利用电脉冲激励源作为敲击锤实现对储层固有频率的检测,通过对电压电流环的控制实现放电频率的快速准确调节。研发了可用于现场施工作业的非常规储层共振增产装置样机,形成了初步的施工作业流程,完成了山西五口煤层气井的现场实验。实验结果表明电脉冲冲击波的有效作用范围可达400~500 m,对储层裂缝改善效果明显,应用前景十分广阔。
  • 图  1  共振前后孔隙度变化图

    Figure  1.  Changes in porosity before and after resonance

    图  2  盲振前后孔隙度变化图

    Figure  2.  Changes in porosity before and after blind vibration

    图  3  电脉冲共振增产技术原理图

    Figure  3.  Schematic diagram of the pulsed resonance technique

    图  4  装置控制原理图

    Figure  4.  Structure diagram of control system

    图  5  装置井下部分结构示意图

    Figure  5.  Structure schematic of downhole part of the device

    图  6  装置工作原理图

    Figure  6.  Operating principle diagram of the device

    图  7  水中单次脉冲放电电压、电流波形图

    Figure  7.  Typical waveform of voltage and current of pulse discharge in water

    图  8  现场作业示意图

    Figure  8.  Schematic diagram of field operation

    图  9  能量扫描成果图

    Figure  9.  Result of energy scanning

    图  10  各向异性成果图

    Figure  10.  Diagram of anisotropic results

  • [1] 薛海飞, 朱光辉, 张健, 等. 深部煤层气水力波及压裂工艺研究及应用[J]. 煤炭技术, 2019, 38(5):81-84. (Xue Haifei, Zhu Guanghui, Zhang Jian, et al. Research and application of hydraulic networks fracturing technology in deep coalbed methane[J]. Coal Technology, 2019, 38(5): 81-84
    [2] 崔晓杰. 等离子脉冲谐振压裂技术[J]. 石油钻探技术, 2015, 43(4):82. (Cui Xiaojie. Plasma pulse resonant fracturing technology[J]. Petroleum Drilling Techniques, 2015, 43(4): 82
    [3] Rezaei A, Siddiqui F, Callen N, et al. Pulsed power plasma to enhance near wellbore permeability and improve well performance[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, Texas, USA: SPE, 2020.
    [4] Rezaei A, Siddiqui F, Awad M M, et al. Pulse plasma stimulation: effect of discharge energy on rock damage under various confining stresses[C]//Proceedings of the 54th U. S. Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2020.
    [5] 张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9):79-85. (Zhang Yongmin, Qiu Aici, Qin Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79-85
    [6] 杨鸿凯, 车爱兰, 李跃明. 集中静荷载初始效应对固支梁固有频率的影响[J]. 应用力学学报, 2017, 34(6):1055-1060. (Yang Hongkai, Che Ailan, Li Yueming. Influence of the initial effect of concentrated static load on natural frequencies of fixed beam[J]. Chinese Journal of Applied Mechanics, 2017, 34(6): 1055-1060
    [7] 李思琪, 闫铁, 李玮. 高频谐波振动冲击破岩机制及试验分析[J]. 中国石油大学学报(自然科学版), 2015, 39(4):85-91. (Li Siqi, Yan Tie, Li Wei, et al. Mechanism experimental study of rock breaking assisted with high frequency harmonic vibration and impaction[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(4): 85-91
    [8] 宋恒宇, 李根生, 史怀忠, 等. 井底岩石的共振响应分析及数值模拟研究[J]. 振动与冲击, 2019, 38(5):13-20. (Song Hengyu, Li Gensheng, Shi Huaizhong, et al. Analysis and numerical simulation for resonant response of bottom hole rock[J]. Journal of Vibration and Shock, 2019, 38(5): 13-20
    [9] 康忠健, 王增宏, 龚大建, 等. 基于页岩频谱共振的储层改善装置研制[J]. 电气应用, 2019, 38(12):4-9. (Kang Zhongjian, Wang Zenghong, Gong Dajian, et al. Development of reservoir improvement device based on shale spectral resonance[J]. Electrotechnical Application, 2019, 38(12): 4-9
    [10] 闫立鹏. 裂缝性岩石振动特性研究及有限元分析[J]. 长江大学学报(自然科学版), 2019, 16(7):104-108. (Yan Lipeng. Study on vibration characteristics of fractured rock and finite element analysis[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(7): 104-108
    [11] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002. (Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002
    [12] 吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析[J]. 强激光与粒子束, 2020, 32:045002. (Wu Mingan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002
    [13] 聂云良, 康忠健, 王聪, 等. 水中脉冲放电电极的烧蚀特性[J/OL]. 高电压技术: 1-10[2021-04-12]. https://doi.org/10.13336/j.1003-6520.hve.20200682.

    Nie Yunliang, Kang Zhongjian, Wang Cong, et al. Electrodes erosion characters of pulse discharge in water[J/OL]. High Voltage Engineering: 1-10[2021-04-12]. https://doi.org/10.13336/j.1003-6520.hve.20200682.
    [14] 仇聪颖, 管显涛, 刘振, 等. 纳秒脉冲放电处理有机染料废水的实验研究[J]. 强激光与粒子束, 2020, 32:025010. (Qiu Congying, Guan Xiantao, Liu Zhen, et al. Degradation of organic dyes by nanosecond pulsed discharge plasma[J]. High Power Laser and Particle Beams, 2020, 32: 025010 doi: 10.11884/HPLPB202032.190390
    [15] Zheng Shichao, Kang Zhongjian, Cui Minghui, et al. Improvement of shale gas reservoir based on plasma pulse shock and frequency resonance technology[J]. Journal of Natural Gas Science and Engineering, 2020, 80: 103403. doi: 10.1016/j.jngse.2020.103403
  • 加载中
图(10)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  259
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-05-17
  • 网络出版日期:  2021-05-25
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回