留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空电弧等离子体发射光谱诊断

张晋 袁召 陈立学 刘姗

张晋, 袁召, 陈立学, 等. 真空电弧等离子体发射光谱诊断[J]. 强激光与粒子束, 2021, 33: 065014. doi: 10.11884/HPLPB202133.210116
引用本文: 张晋, 袁召, 陈立学, 等. 真空电弧等离子体发射光谱诊断[J]. 强激光与粒子束, 2021, 33: 065014. doi: 10.11884/HPLPB202133.210116
Zhang Jin, Yuan Zhao, Chen Lixue, et al. Vacuum arc plasma emission spectroscopy diagnosis[J]. High Power Laser and Particle Beams, 2021, 33: 065014. doi: 10.11884/HPLPB202133.210116
Citation: Zhang Jin, Yuan Zhao, Chen Lixue, et al. Vacuum arc plasma emission spectroscopy diagnosis[J]. High Power Laser and Particle Beams, 2021, 33: 065014. doi: 10.11884/HPLPB202133.210116

真空电弧等离子体发射光谱诊断

doi: 10.11884/HPLPB202133.210116
基金项目: 国家重点研发计划项目(2018YFB0904300);国家自然科学基金青年科学基金项目(51807069)
详细信息
    作者简介:

    张 晋(1998—),男,硕士研究生,主要从事真空电弧方面的研究

    通讯作者:

    袁 召(1985—),男,博士,副研究员,主要从事高压电器、高压电抗器等方面的研究工作

  • 中图分类号: TM561

Vacuum arc plasma emission spectroscopy diagnosis

  • 摘要: 真空断路器的开断容量限制其在高压大电流开断领域的应用,获取燃弧过程中的等离子体参数对于提高真空断路器的开断容量至关重要。利用发射光谱法对真空电弧内的等离子体参数进行了诊断,研究了在不同电流幅值条件下真空电弧内电子温度、电子密度、谱线强度的轴向分布规律,结合真空电弧高速图片对真空电弧内不同粒子的扩散过程与弧柱直径之间的关系进行了分析。得到的电子温度在8000~10 000 K量级,电子密度在1019~1020 m−3量级,电子温度与电子密度从阴极向阳极逐渐下降,同时铜原子谱线强度主要集中在两极而一价铜离子谱线强度由阴极向阳极逐渐升高。铜原子谱线强度的径向分布呈现类平顶波分布、一价铜离子谱线强度的径向分布呈现类高斯分布的特点,且铜原子的谱线范围略大于弧柱直径,一价铜离子的谱线范围略小于弧柱直径,两种粒子的扩散速度存在差异。
  • 图  1  实验装置示意图

    Figure  1.  Schematic of the experimental setup

    图  2  实验触头结构

    Figure  2.  Experimental contact structure

    图  3  谱线强度的轴向分布

    Figure  3.  Axial distributions of spectral line intensity

    图  4  谱线强度的径向分布

    Figure  4.  Radial distributions of spectral line intensity

    图  5  真空电弧图像与弧柱直径图

    Figure  5.  Vacuum arc image and arc column diameter image

    图  6  电子温度与电子密度的轴向分布

    Figure  6.  Axial distribution of electron temperature and electron density

    表  1  铜原子的特征谱线参数

    Table  1.   Parameters of characteristic spectral lines of copper atom (Cu I)

    wavelength/nm${E_k }$/cm−1${g_k }$${A_{ki} }$/(108s−1
    510.6 30783.697 4 0.020
    515.4 49935.195 4 0.600
    521.9 49942.051 6 0.750
    529.4 62403.332 8 0.109
    下载: 导出CSV
  • [1] 王章启, 邹积岩, 何俊佳, 等. 电力开关技术[M]. 武汉: 华中科技大学出版社, 2003.

    Wang Zhangqi, Zou Jiyan, He Junjia et al. Power switch technology[M]. Wuhan: Huazhong University of Science & Technology Press, 2003.
    [2] 李建基. 真空断路器技术的进步[J]. 电器工业, 2001(7):14-15. (Li Jianji. Advances in vacuum circuit breaker technology[J]. Electrical Industry, 2001(7): 14-15
    [3] 董攀, 龙继东, 陈德彪, 等. 强流激光离子源中的等离子体参数诊断[J]. 强激光与粒子束, 2016, 28:055103. (Dong Pan, Long Jidong, Chen Debiao, et al. Diagnosis of plasma in high current laser ion source[J]. High Power Laser and Particle Beams, 2016, 28: 055103 doi: 10.11884/HPLPB201628.055103
    [4] Khakpour A, Franke S, Methling R, et al. Optical and electrical investigation of transition from anode spot type 1 to anode spot type 2[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2126-2134. doi: 10.1109/TPS.2017.2690572
    [5] Methling R, Gorchakov S, Lisnyak M V, et al. Spectroscopic investigation of a Cu—Cr vacuum arc[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2303-2309. doi: 10.1109/TPS.2015.2443856
    [6] Lisnyak M, Pipa A V, Gorchakov S, et al. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes[J]. Journal of Applied Physics, 2015, 188: 123304.
    [7] Khakpour A, Methling R, Franke S, et al. Vapor density and electron density determination during high-current anode phenomena in vacuum arcs[J]. Journal of Applied Physics, 2018, 124: 243301. doi: 10.1063/1.5057753
    [8] 王立军, 贾申利, 史宗谦, 等. 开距对不同状态下真空电弧特性影响的仿真分析[J]. 中国电机工程学报, 2008, 28(7):154-160. (Wang Lijun, Jia Shenli, Shi Zongqian, et al. Simulation analysis of influence of electrode separations on vacuum arcs characteristics under different states[J]. Proceedings of the CSEE, 2008, 28(7): 154-160 doi: 10.3321/j.issn:0258-8013.2008.07.025
    [9] 王立军, 贾申利, 史宗谦, 等. 电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J]. 电工技术学报, 2007, 22(1):54-61. (Wang Lijun, Jia Shenli, Shi Zongqian, et al. Numerical simulation of effect of arc current and axial magnetic field on low current vacuum arc characteristics[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 54-61 doi: 10.3321/j.issn:1000-6753.2007.01.010
    [10] Wang Haoran, Wang Zhenxing, Liu Jiankun, et al. Optical absorption spectroscopy of metallic (Cr) vapor in a vacuum arc[J]. Journal of Physics D: Applied Physics, 2017, 51: 035203.
    [11] Gortschakow S, Popov S, Khakpour A, et al. Cu and Cr density determination during high-current discharge modes in vacuum arcs[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 181-184.
    [12] Khakpour A, Popov S, Franke S, et al. Determination of Cr density after current zero in a high-current vacuum arc considering anode plume[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2108-2114. doi: 10.1109/TPS.2017.2681898
    [13] Wang Zhenxing, Liu Jiankun, Li Yuecheng, et al. Two-dimensional observation of copper atoms after forced extinction of vacuum arcs by laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 2020, 48(8): 2777-2789. doi: 10.1109/TPS.2020.3008277
    [14] Liu Jiankun, Li Yi, Geng Yingsan, et al. Two dimensional distribution of metallic (Cu) vapor in a forced vacuum arc extinction by LIF[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 403-406.
    [15] Liu Jiankun, Zha Ziru, Wang Zhenxing, et al. Two dimensional distribution diagnostic of copper vapor in a vacuum arc by laser-induced fluorescence[C]//2019 5th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). Kitakyushu: IEEE, 2019: 144-147.
    [16] Lins G. Measurement of the neutral copper vapor density around current zero of a 500-A vacuum arc using laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 1985, 13(6): 577-581. doi: 10.1109/TPS.1985.4316476
    [17] Wang Haoran, Liu Ziyuan, Liu Jiankun, et al. Investigation of vacuum arc extinction process by planar laser-induced fluorescence[C]//2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). Greifswald: IEEE, 2018: 313-316.
    [18] Lins G. Collisional transfer and neutral copper vapour density during a diffuse vacuum arc[J]. Journal of Physics D: Applied Physics, 1990, 23: 784. doi: 10.1088/0022-3727/23/7/006
    [19] 赵文华, 唐皇哉, 沈岩, 等. 谱线强度法所测得温度的物理意义[J]. 光谱学与光谱分析, 2007, 27(11):2145-2149. (Zhao Wenhua, Tang Huangzai, Shen Yan, et al. Physical meaning of temperature measured by spectral line intensity method[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2145-2149
    [20] Griem H R. Plasma spectroscopy[M]. New York: McGraw-Hill, 1964.
    [21] 陈新坤. 原子发射光谱分析原理[M]. 天津: 天津科学技术出版社, 1991.

    Chen Xinkun. Principles of atomic emission spectroscopy[M] Tianjin: Tianjin Science and Technology Press, 1991).
    [22] Khakpour A, Franke S, Gortschakow S, et al. Investigation of anode plume in vacuum arcs using different optical diagnostic methods[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 3488-3495. doi: 10.1109/TPS.2019.2904458
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  929
  • HTML全文浏览量:  365
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-18
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回