留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氩气电弧等离子体炬提纯大鳞片石墨研究

程月 俞哲 李金懋 宋春莲 赵智豪 路丹丹 张小芳

程月, 俞哲, 李金懋, 等. 氩气电弧等离子体炬提纯大鳞片石墨研究[J]. 强激光与粒子束, 2021, 33: 065021. doi: 10.11884/HPLPB202133.210118
引用本文: 程月, 俞哲, 李金懋, 等. 氩气电弧等离子体炬提纯大鳞片石墨研究[J]. 强激光与粒子束, 2021, 33: 065021. doi: 10.11884/HPLPB202133.210118
Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021. doi: 10.11884/HPLPB202133.210118
Citation: Cheng Yue, Yu Zhe, Li Jinmao, et al. Study on purification of flaky graphite by argon arc plasma torch[J]. High Power Laser and Particle Beams, 2021, 33: 065021. doi: 10.11884/HPLPB202133.210118

氩气电弧等离子体炬提纯大鳞片石墨研究

doi: 10.11884/HPLPB202133.210118
基金项目: 国家自然科学基金项目(51877024);黑龙江省自然科学基金项目(LH2020E111)
详细信息
    作者简介:

    程 月(1996—),女,硕士研究生,从事电弧等离子体提纯石墨研究

    通讯作者:

    俞 哲(1985—),男,博士,讲师,从事气体放电及其应用研究

  • 中图分类号: O539

Study on purification of flaky graphite by argon arc plasma torch

  • 摘要: 石墨材料作为一种工业原料,特别是纯度在99.9%以上的高纯石墨被应用在各大高科技领域,现有物理法和化学法的石墨提纯技术成本高、酸碱对设备和环境破坏严重、工艺流程复杂,因此开发一种优良有效的石墨提纯技术,已成为近年来国内外研究的热点。建立了一种利用非转移电弧等离子体炬提纯大鳞片石墨的方法,利用电弧可快速产生高温的特性,对黑龙江省鸡西市纯度为94.18%的大鳞片石墨样品进行高温处理。研究显示在本文电弧装置下提纯石墨的最佳放电参数范围气流量为25 L/min、电流为400 A、功率为10 kW,此时的电弧表面温度高达3350 ℃,利用扫描电子显微镜等对电弧处理前后石墨样品的微观结构对比发现石墨样品出现粉碎、断裂等特点,根据石墨化学分析方法国家标准GB/T 3521 2008对石墨纯度及其杂质进行研究分析,经电弧处理后石墨纯度提高到99.21%。
  • 图  1  鸡西大鳞片石墨样品扫描电镜照片

    Figure  1.  Scanning electron micrograph of flaky graphite samples from Jixi

    图  2  电弧等离子体炬提纯石墨实验系统示意图

    Figure  2.  Experimental system of arc plasma torch purification graphite

    图  3  实验装置实物图

    Figure  3.  Physical image of experimental setup

    图  4  电弧等离子体炬电极结构图

    Figure  4.  Structure of arc plasma torch electrode

    图  5  氩气电弧等离子体炬伏安特性曲线

    Figure  5.  Voltage-current characteristics of argon arc plasma torch

    图  6  不同气体流量下电弧等离子体炬影像

    Figure  6.  Photos of arc plasma torch at different gas flowrate

    图  7  电弧等离子体炬表面温度分布

    Figure  7.  Temperature distribution of arc plasma torch

    图  8  加入石墨样品后电弧等离子体炬的伏安特性曲线

    Figure  8.  Diagram of the voltage-current characteristic of arc plasma torch after adding the graphite sample

    图  9  电弧等离子体炬最高温度随电流变化

    Figure  9.  Arc plasma torch’s maximum temperature varies with the current

    图  10  加入石墨样品后放电影像的变化

    Figure  10.  Changes of arc plasma before and after adding graphite

    图  11  送粉速5 g/min时外送粉提纯后石墨纯度

    Figure  11.  Graphite purity by outer shipping at 5 g/min of delivery speed

    图  12  送粉速10 g/min时外送粉提纯后石墨纯度

    Figure  12.  Graphite purity by outer shipping at 10 g/min of delivery speed

    图  13  送粉速15 g/min时外送粉提纯后石墨纯度

    Figure  13.  Graphite purity by outer shipping at 15 g/min of delivery speed

    图  14  处理后石墨样品

    Figure  14.  Photo of graphite sample after purification

    图  15  处理后石墨灰分实物图

    Figure  15.  Photo of graphite ash after calcination

    表  1  鸡西大鳞片石墨主要元素及质量分数

    Table  1.   Composition and mass fraction of main elements of flaky graphite from Jixi city

    elementmass fraction/%melting point/℃boiling point/℃
    C 94.18 3850 4830
    Si 1.12 1723 2230
    Al 0.27 2045 2980
    Fe 0.17 1565 3414
    S 0.06 112 444
    Ca 0.05 2572 2850
    Mg 0.004 2800 3600
    下载: 导出CSV

    表  2  电弧等离子体炬放电参数表

    Table  2.   Discharge parameters of arc plasma

    current/Apower/kWflow rate/(nL·min−1)voltage/V
    200~5002.4~18.010~3020~30
    下载: 导出CSV

    表  3  处理前后石墨主要元素及质量分数

    Table  3.   Changes of composition and proportion of the main elements of graphite before and after purification

    elementmass fraction before process/%mass fraction after process/%
    C94.1899.21
    Si1.120.52
    Al0.270.07
    Fe0.170.17
    S0.060.001
    Ca0.050.003
    Mg0.0040.001
    下载: 导出CSV
  • [1] 李箫波, 魏文赋, 左浩梓, 等. 基于Mo2C晶粒增强的铜/石墨复合材料浸渗特性与优化[J/OL]. 中国电机工程学报, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html.

    Li Xiaobo, Wei Wenfu, Zuo Haozi, et al. Infiltration characteristics and optimization of copper/graphite composite reinforced by Mo2C grain[J/OL]. Proceedings of the CSEE, (2021-04-19)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.tm.20210416.1514.004.html
    [2] 张谦, 文书明, 丰奇成, 等. 鳞片石墨的提纯工艺研究现状与展望[J]. 硅酸盐通报, 2019, 38(2):392-397. (Zhang Qian, Wen Shuming, Feng Qicheng, et al. Research status and prospect of flake graphite purification technology[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 392-397
    [3] Wang Yukun, Gao Shutao, Zang Xiaohuan, et al. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples[J]. Analytica Chimica Acta, 2012, 716: 112-118. doi: 10.1016/j.aca.2011.12.007
    [4] 袁来敏. 辽宁某鳞片石墨矿浮选工艺试验[J]. 现代矿业, 2013, 29(6):94-96. (Yuan Laimin. The process testing of floatation process of a scale graphite mine in Liaoning province[J]. Modern Mining, 2013, 29(6): 94-96 doi: 10.3969/j.issn.1674-6082.2013.06.033
    [5] Li Yufeng, Zhu Shifu, Wang Lei. Purification of natural graphite by microwave assisted acid leaching[J]. Carbon, 2013, 55: 377-378.
    [6] 赵越, 刘敬党, 张艳飞, 等. 湖南某地隐晶质石墨提纯试验研究[J]. 非金属矿, 2017, 40(6):66-68. (Zhao Yue, Liu Jingdang, Zhang Yanfei, et al. Study on the refine of aphanitic graphite from Hunan[J]. Non-Metallic Mines, 2017, 40(6): 66-68 doi: 10.3969/j.issn.1000-8098.2017.06.021
    [7] Adham K, Bowes G. Natural graphite purification through chlorination in fluidized bed reactor[M]//Davis B. Extraction 2018: the Minerals, Metals & Materials Series. Cham: Springer, 2018: 2505-2512.
    [8] 张向军, 陈斌, 高欣明. 高温石墨化提纯晶质(鳞片)石墨[J]. 炭素技术, 2001(2):39-40. (Zhang Xiangjun, Chen Bin, Gao Xinming. Depuration of scaly graphites by high temperature graphitization[J]. Carbon Techniques, 2001(2): 39-40 doi: 10.3969/j.issn.1001-3741.2001.02.010
    [9] 李元, 郜晶, 朱光远, 等. 液相等离子体技术制备碳纳米材料的进展与趋势[J]. 中国电机工程学报, 2021, 41(8):2909-2919. (Li Yuan, Gao Jing, Zhu Guangyuan, et al. Advances and trends of carbon nanomaterial synthesis by liquid-plasma processing[J]. Proceedings of the CSEE, 2021, 41(8): 2909-2919
    [10] 赵莉华, 冀一玮, 尚豪, 等. 正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响[J/OL]. 中国电机工程学报, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html.

    Zhao Lihua, Ji Yiwei, Shang Hao, et al. Propagation mechanism of a positive DC driven atmospheric pressure helium plasma jet: influences of He-air mixing layer[J/OL]. Proceedings of the CSEE, (2021-04-27)[2021-05-20]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210427.0928.005.html
    [11] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358. (Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [12] Fedoseeva Y V, Gorodetskiy D V, Makarova A A, et al. Influence of the temperature of molybdenum substrates on the structure of diamond coatings obtained by chemical vapor deposition from a high-speed microwave plasma jet[J]. Journal of Structural Chemistry, 2021, 62(1): 153-162. doi: 10.1134/S0022476621010182
    [13] Hsu M, Sweeney M P, Johnson D L. Thermal effects during microwave plasma sintering of ceramics[J]. MRS Online Proceedings Library, 1990, 189(1): 289-301.
    [14] 古忠涛, 叶高英, 金玉萍. 射频感应等离子体制备球形钛粉的成分分析[J]. 强激光与粒子束, 2012, 24(6):1409-1413. (Gu Zhongtao, Ye Gaoying, Jin Yuping. Chemical compositions of spherical titanium powders prepared by RF induction plasma[J]. High Power Laser and Particle Beams, 2012, 24(6): 1409-1413 doi: 10.3788/HPLPB20122406.1409
    [15] Cao Jin, Matsoukas T. Nanoparticles and nanocomposites in RF plasma[J]. MRS Online Proceedings Library, 2000, 635: C4.12.
    [16] 钟良, 侯力, 古忠涛. 射频感应等离子体制备球形氧化铝的工艺研究[J]. 强激光与粒子束, 2014, 26:089003. (Zhong Liang, Hou Li, Gu Zhongtao. Preparation procedure for spherical alumina by RF induction plasma[J]. High Power Laser and Particle Beams, 2014, 26: 089003 doi: 10.11884/HPLPB201426.089003
    [17] Njiki A, Kamgang-Youbi G, Lontsi C D, et al. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain[J]. International Journal of Environmental Science and Technology, 2016, 13(1): 263-274. doi: 10.1007/s13762-015-0867-1
    [18] Iya-Sou D, Laminsi S, Cavadias S, et al. Removal of model pollutants in aqueous solution by gliding arc discharge: determination of removal mechanisms. Part I: experimental study[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 97-113. doi: 10.1007/s11090-012-9423-7
    [19] Mountapmbeme-Kouotou P, Laminsi S, Acayanka E, et al. Degradation of palm oil refinery wastewaters by non-thermal gliding arc discharge at atmospheric pressure[J]. Environmental Monitoring and Assessment, 2013, 185(7): 5789-5800. doi: 10.1007/s10661-012-2984-3
    [20] Kaku S M Y. Evaluation of vacuum arc melted-powder metallurgy Al–ZrB2 composite[M]//Lakshminarayanan A, Idapalapati S, Vasudevan M. Advances in Materials and Metallurgy. Singapore: Springer, 2019: 83-90.
    [21] 王振廷, 孟君晟. 石墨提纯方法及工艺[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.

    Wang Zhenting, Meng Junsheng. The method and technology of purifying graphite[M]. Harbin: Harbin Institute of Technology Press, 2018
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  883
  • HTML全文浏览量:  246
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-06-03
  • 网络出版日期:  2021-06-11
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回