留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Efficiency enhancement of L-band relativistic magnetron with endcaps

Liu Zeyang Li Sirui Fan Yuwei Wang Xiaoyu

刘则阳, 李思锐, 樊玉伟, 等. 阴极帽结构L波段相对论磁控管的效率提升[J]. 强激光与粒子束, 2021, 33: 073006. doi: 10.11884/HPLPB202133.210119
引用本文: 刘则阳, 李思锐, 樊玉伟, 等. 阴极帽结构L波段相对论磁控管的效率提升[J]. 强激光与粒子束, 2021, 33: 073006. doi: 10.11884/HPLPB202133.210119
Liu Zeyang, Li Sirui, Fan Yuwei, et al. Efficiency enhancement of L-band relativistic magnetron with endcaps[J]. High Power Laser and Particle Beams, 2021, 33: 073006. doi: 10.11884/HPLPB202133.210119
Citation: Liu Zeyang, Li Sirui, Fan Yuwei, et al. Efficiency enhancement of L-band relativistic magnetron with endcaps[J]. High Power Laser and Particle Beams, 2021, 33: 073006. doi: 10.11884/HPLPB202133.210119

阴极帽结构L波段相对论磁控管的效率提升

doi: 10.11884/HPLPB202133.210119
详细信息
  • 中图分类号: TN128

Efficiency enhancement of L-band relativistic magnetron with endcaps

Funds: National Natural Science Foundation of China (61671457, 61871390); Hunan Provincial Innovation Foundation for Postgraduate (CX2016B030)
More Information
    Author Bio:

    Liu Zeyang (1995—), male, master degree candidate, teaching assistant, engaged in high power microwave research

    Corresponding author: Fan Yuwei(1972—), male, PhD, professor, engaged in high power microwave research
  • 摘要: 提出了一种具有阴极帽结构的L波段相对论磁控管的设计方案,并给出了数值模拟结果。在相对论磁控管中引入阴极帽是为了降低轴向泄露电流并提高功率转换效率。三维粒子模拟用于研究引入阴极帽后产生的影响。结果显示,当在束波互作用区域的上游和下游同时添加阴极帽,并且将阴极延伸出阳极块结构,直至衍射输出结构时,轴向泄露电流不仅会从1 kA降至72 A,且功率转换效率会有明显提高。虽然如此,阴极帽的引入除了以上优点外,同样会带来微波反射。因此,阴极帽的半径和位置对于效率有至关重要的影响,它们之间存在一个最优数值来保证效率最高。当电压为563 kV, 磁场为0.34 T时,轴向衍射输出结构L波段相对论磁控管输出微波功率为2.13 GW,频率为1.59 GHz,相应的功率转换效率为75.5%。
  • Figure  1.  A6 relativistic magnetron with a stepped mode conversion DO

    Figure  2.  magnetron cathode endcap designs

    Figure  3.  Influence on reflection of downstream endcap with different radius and at different position

    Figure  4.  Influence of the radius of the downstream endcap and the distance between the emission region and the downstream endcap

    Figure  5.  Simulation results of the optimized magnetron

    Table  1.   Output power, power conversion efficiency and leakage current of magnetron

    endcap designleakage current/kAoutput power/GWpower conversion efficiency/%
    (a)1.491.8461.0
    (b)0.491.8666.3
    (c)0.081.8971.4
    (d)0.072.1074.4
    (e)0.952.0471.2
    下载: 导出CSV
  • [1] Kovalev N F, Kolchugin B D, Nechaev V E, et al. Relativistic magnetron with diffraction coupling[J]. Technical Physics Letters, 1977, 3: 430-433.
    [2] Daimon M, Jiang W. Modified configuration of relativistic magnetron with diffraction output for efficiency improvement[J]. Applied Physics Letters, 2007, 91: 191503. doi: 10.1063/1.2803757
    [3] Li Wei, Liu Yonggui. An efficient mode conversion configuration in relativistic magnetron with axial diffraction output[J]. Journal of Applied Physics, 2009, 106: 053303. doi: 10.1063/1.3211323
    [4] Price D, Levine J S, Benford J. Diode plasma effects on the microwave pulse length from relativistic magnetrons[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 348-353. doi: 10.1109/27.700765
    [5] Leach C, Prasad S, Fuks M I, et al. Compact relativistic magnetron with Gaussian radiation pattern[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3116-3120. doi: 10.1109/TPS.2012.2212910
    [6] Saveliev Y M, Spark S N, Kerr B A, et al. Effect of cathode end caps and a cathode emissive surface on relativistic magnetron operation[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 478-484. doi: 10.1109/27.887651
    [7] Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
    [8] Kesari V, Keshari J P. Analysis of a circular waveguide loaded with dielectric and metal discs[J]. Progress in Electromagnetics Research, 2011, 111: 253-269. doi: 10.2528/PIER10110207
    [9] Leopold J G, Shlapakovski A S, Sayapin A, et al. Revisiting power flow and pulse shortening in a relativistic magnetron[J]. IEEE Transactions on Plasma Science, 2015, 43(9): 3168-3175. doi: 10.1109/TPS.2015.2463717
    [10] Fan Yuwei, Liu Jing, Zhong Huihuang, et al. Theoretical investigation of the fundamental mode frequency of A6 magnetron[J]. Journal of Applied Physics, 2009, 105: 083310. doi: 10.1063/1.3116202
    [11] Wang Xiaoyu, Fan Yuwei, Shu Ting, et al. Theoretical investigation of the dielectric-filled relativistic magnetron[J]. Physics of Plasmas, 2016, 23: 013108. doi: 10.1063/1.4939705
    [12] Wang Xiaoyu, Fan Yuwei, Shi Difu, et al. A high-efficiency relativistic magnetron with the filled dielectric[J]. Physics of Plasmas, 2016, 23: 073103. doi: 10.1063/1.4956460
    [13] Liu Meiqin, Fuks M I, Schamiloglu E, et al. Operation characteristics of A6 relativistic magnetron using single-stepped cavities with axial extraction[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3344-3348. doi: 10.1109/TPS.2014.2352353
    [14] Li Sirui, Fan Yuwei, Wang Xiaoyu. An L-band relativistic magnetron with cathode priming[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 204-208. doi: 10.1109/TPS.2018.2881174
    [15] Liu Zeyang, Fan Yuwei, Wang Xiaoyu, et al. A high-efficiency relativistic magnetron with a novel all-cavity extraction structure[J]. AIP Advances, 2020, 10: 035104. doi: 10.1063/1.5102151
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  377
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回